未验证 提交 ae859b7d 编写于 作者: T Thomas Young 提交者: GitHub

Merge branch 'develop' into fix_async_while

......@@ -30,7 +30,7 @@ message( "WITH_GPU = ${WITH_GPU}")
# Paddle Version should be one of:
# latest: latest develop build
# version number like 1.5.2
SET(PADDLE_VERSION "2.2.0")
SET(PADDLE_VERSION "2.2.2")
if (WITH_GPU)
message("CUDA: ${CUDA_VERSION}, CUDNN_MAJOR_VERSION: ${CUDNN_MAJOR_VERSION}")
# cuda 11.0 is not supported, 11.2 would be added.
......
......@@ -23,10 +23,13 @@ from .proto import general_model_config_pb2 as m_config
import paddle.inference as paddle_infer
import logging
import glob
from paddle_serving_server.pipeline.error_catch import ErrorCatch, CustomException, CustomExceptionCode, ParamChecker, ParamVerify
check_dynamic_shape_info=ParamVerify.check_dynamic_shape_info
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("LocalPredictor")
logger.setLevel(logging.INFO)
from paddle_serving_server.util import kill_stop_process_by_pid
precision_map = {
'int8': paddle_infer.PrecisionType.Int8,
......@@ -157,12 +160,12 @@ class LocalPredictor(object):
"use_trt:{}, use_lite:{}, use_xpu:{}, precision:{}, use_calib:{}, "
"use_mkldnn:{}, mkldnn_cache_capacity:{}, mkldnn_op_list:{}, "
"mkldnn_bf16_op_list:{}, use_feed_fetch_ops:{}, "
"use_ascend_cl:{}, min_subgraph_size:{}, dynamic_shape_info:{}".format(
model_path, use_gpu, gpu_id, use_profile, thread_num, mem_optim,
ir_optim, use_trt, use_lite, use_xpu, precision, use_calib,
use_mkldnn, mkldnn_cache_capacity, mkldnn_op_list,
mkldnn_bf16_op_list, use_feed_fetch_ops, use_ascend_cl,
min_subgraph_size, dynamic_shape_info))
"use_ascend_cl:{}, min_subgraph_size:{}, dynamic_shape_info:{}".
format(model_path, use_gpu, gpu_id, use_profile, thread_num,
mem_optim, ir_optim, use_trt, use_lite, use_xpu, precision,
use_calib, use_mkldnn, mkldnn_cache_capacity, mkldnn_op_list,
mkldnn_bf16_op_list, use_feed_fetch_ops, use_ascend_cl,
min_subgraph_size, dynamic_shape_info))
self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var]
......@@ -223,11 +226,20 @@ class LocalPredictor(object):
use_static=False,
use_calib_mode=use_calib)
@ErrorCatch
@ParamChecker
def dynamic_shape_info_helper(dynamic_shape_info:lambda dynamic_shape_info: check_dynamic_shape_info(dynamic_shape_info)):
pass
_, resp = dynamic_shape_info_helper(dynamic_shape_info)
if resp.err_no != CustomExceptionCode.OK.value:
print("dynamic_shape_info configure error, it should contain [min_input_shape', 'max_input_shape', 'opt_input_shape' {}".format(resp.err_msg))
kill_stop_process_by_pid("kill", os.getpgid(os.getpid()))
if len(dynamic_shape_info):
config.set_trt_dynamic_shape_info(
dynamic_shape_info['min_input_shape'],
dynamic_shape_info['max_input_shape'],
dynamic_shape_info['opt_input_shape'])
config.set_trt_dynamic_shape_info(
dynamic_shape_info['min_input_shape'],
dynamic_shape_info['max_input_shape'],
dynamic_shape_info['opt_input_shape'])
# set lite
if use_lite:
config.enable_lite_engine(
......@@ -269,7 +281,18 @@ class LocalPredictor(object):
if mkldnn_bf16_op_list is not None:
config.set_bfloat16_op(mkldnn_bf16_op_list)
self.predictor = paddle_infer.create_predictor(config)
@ErrorCatch
def create_predictor_check(config):
predictor = paddle_infer.create_predictor(config)
return predictor
predictor, resp = create_predictor_check(config)
if resp.err_no != CustomExceptionCode.OK.value:
logger.critical(
"failed to create predictor: {}".format(resp.err_msg),
exc_info=False)
print("failed to create predictor: {}".format(resp.err_msg))
kill_stop_process_by_pid("kill", os.getpgid(os.getpid()))
self.predictor = predictor
def predict(self, feed=None, fetch=None, batch=False, log_id=0):
"""
......@@ -315,7 +338,8 @@ class LocalPredictor(object):
# Assemble the input data of paddle predictor, and filter invalid inputs.
input_names = self.predictor.get_input_names()
for name in input_names:
if isinstance(feed[name], list):
if isinstance(feed[name], list) and not isinstance(feed[name][0],
str):
feed[name] = np.array(feed[name]).reshape(self.feed_shapes_[
name])
if self.feed_types_[name] == 0:
......@@ -342,6 +366,9 @@ class LocalPredictor(object):
feed[name] = feed[name].astype("complex64")
elif self.feed_types_[name] == 11:
feed[name] = feed[name].astype("complex128")
elif isinstance(feed[name], list) and isinstance(feed[name][0],
str):
pass
else:
raise ValueError("local predictor receives wrong data type")
......
......@@ -34,6 +34,7 @@ from .error_catch import CustomExceptionCode as ChannelDataErrcode
_LOGGER = logging.getLogger(__name__)
class ChannelDataType(enum.Enum):
"""
Channel data type
......@@ -167,7 +168,8 @@ class ChannelData(object):
elif isinstance(npdata, dict):
# batch_size = 1
for _, value in npdata.items():
if not isinstance(value, np.ndarray):
if not isinstance(value, np.ndarray) and not (isinstance(
value, list) and isinstance(value[0], str)):
error_code = ChannelDataErrcode.TYPE_ERROR.value
error_info = "Failed to check data: the value " \
"of data must be np.ndarray, but get {}.".format(
......
......@@ -227,5 +227,17 @@ class ParamVerify(object):
if key not in right_fetch_list:
return False
return True
@staticmethod
def check_dynamic_shape_info(dynamic_shape_info):
if not isinstance(dynamic_shape_info, dict):
return False
if len(dynamic_shape_info) == 0:
return True
shape_info_keys = ["min_input_shape", "max_input_shape", "opt_input_shape"]
if all(key in dynamic_shape_info for key in shape_info_keys):
return True
else:
return False
ErrorCatch = ErrorCatch()
......@@ -46,6 +46,7 @@ from .util import NameGenerator
from .profiler import UnsafeTimeProfiler as TimeProfiler
from . import local_service_handler
from .pipeline_client import PipelineClient as PPClient
from paddle_serving_server.util import kill_stop_process_by_pid
_LOGGER = logging.getLogger(__name__)
_op_name_gen = NameGenerator("Op")
......@@ -1328,7 +1329,12 @@ class Op(object):
# init ops
profiler = None
try:
@ErrorCatch
def check_helper(self, is_thread_op, model_config, workdir,
thread_num, device_type, devices, mem_optim, ir_optim,
precision, use_mkldnn, mkldnn_cache_capacity, mkldnn_op_list,
mkldnn_bf16_op_list, min_subgraph_size, dynamic_shape_info):
if is_thread_op == False and self.client_type == "local_predictor":
self.service_handler = local_service_handler.LocalServiceHandler(
model_config=model_config,
......@@ -1354,12 +1360,21 @@ class Op(object):
concurrency_idx)
# check all ops initialized successfully.
profiler = self._initialize(is_thread_op, concurrency_idx)
return profiler
except Exception as e:
profiler, resp = check_helper(self, is_thread_op, model_config, workdir,
thread_num, device_type, devices, mem_optim, ir_optim,
precision, use_mkldnn, mkldnn_cache_capacity, mkldnn_op_list,
mkldnn_bf16_op_list, min_subgraph_size, dynamic_shape_info)
if resp.err_no != CustomExceptionCode.OK.value:
_LOGGER.critical(
"{} failed to init op: {}".format(op_info_prefix, e),
exc_info=True)
os._exit(-1)
"{} failed to init op: {}".format(op_info_prefix, resp.err_msg),
exc_info=False)
print("{} failed to init op: {}".format(op_info_prefix, resp.err_msg))
kill_stop_process_by_pid("kill", os.getpgid(os.getpid()))
_LOGGER.info("{} Succ init".format(op_info_prefix))
batch_generator = self._auto_batching_generator(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册