提交 a7ad67d2 编写于 作者: J Jiawei Wang 提交者: GitHub

Update CUBE_LOCAL_CN.md

上级 1ee4af9b
# 单机版稀疏参数服务器Cube
([简体中文](./CUBE_LOCAL.md)|English)
## 引言
在python/examples下有两个关于CTR的示例,他们分别是criteo_ctr, criteo_ctr_with_cube。前者是在训练时保存整个模型,包括稀疏参数。后者是将稀疏参数裁剪出来,保存成两个部分,一个是稀疏参数,另一个是稠密参数。由于在工业级的场景中,稀疏参数的规模非常大,达到10^9数量级。因此在一台机器上启动大规模稀疏参数预测是不实际的,因此我们引入百度多年来在稀疏参数服务器上的工业级产品Cube,提供分布式的稀疏参数服务。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册