未验证 提交 a69121a6 编写于 作者: S shaohua.zhang 提交者: GitHub

add some FA and add a category

上级 a205bab9
......@@ -46,7 +46,15 @@ InvalidArgumentError: Device id must be less than GPU count, but received id is:
**A:** 目前(0.4.0)仅支持CentOS,具体列表查阅[这里](https://github.com/PaddlePaddle/Serving/blob/develop/doc/DOCKER_IMAGES.md)
#### Q: python编译的GCC版本与serving的版本不匹配
**A:**:1)使用[GPU docker](https://github.com/PaddlePaddle/Serving/blob/develop/doc/RUN_IN_DOCKER.md#gpunvidia-docker)解决环境问题
​ 2)修改anaconda的虚拟环境下安装的python的gcc版本[参考](https://www.jianshu.com/p/c498b3d86f77)
#### Q: paddle-serving是否支持本地离线安装
**A:** 支持离线部署,需要把一些相关的[依赖包](https://github.com/PaddlePaddle/Serving/blob/develop/doc/COMPILE.md)提前准备安装好
## 预测问题
......@@ -105,6 +113,19 @@ client端的日志直接打印到标准输出。
通过在部署服务之前 'export GLOG_v=3'可以输出更为详细的日志信息。
#### Q: paddle-serving启动成功后,相关的日志在哪里设置
**A:** 1)警告是glog组件打印的,告知glog初始化之前日志打印在STDERR
​ 2)一般采用GLOG_v方式启动服务同时设置日志级别。
例如:
```
GLOG_v=2 python -m paddle_serving_server.serve --model xxx_conf/ --port 9999
```
#### Q: (GLOG_v=2下)Server端日志一切正常,但Client端始终得不到正确的预测结果
**A:** 可能是配置文件有问题,检查下配置文件(is_load_tensor,fetch_type等有没有问题)
......@@ -116,3 +137,35 @@ client端的日志直接打印到标准输出。
## 性能优化
## 基础知识
#### Q: Paddle Serving 、Paddle Inference、PaddleHub Serving三者的区别及联系?
**A:** paddle serving是远程服务,即发起预测的设备(手机、浏览器、客户端等)与实际预测的硬件不在一起。 paddle inference是一个library,适合嵌入到一个大系统中保证预测效率,paddle serving调用了paddle inference做远程服务。paddlehub serving可以认为是一个示例,都会使用paddle serving作为统一预测服务入口。如果在web端交互,一般是调用远程服务的形式,可以使用paddle serving的web service搭建。
#### Q: paddle-serving是否支持Int32支持
**A:** 在protobuf定feed_type和fetch_type编号与数据类型对应如下
​ 0-int64
​ 1-float32
​ 2-int32
#### Q: paddle-serving是否支持windows和Linux环境下的多线程调用
**A:** 客户端可以发起多线程访问调用服务端
#### Q: paddle-serving如何修改消息大小限制
**A:** 在server端和client但通过FLAGS_max_body_size来扩大数据量限制,单位为字节,默认为64MB
#### Q: paddle-serving客户端目前支持哪些语言
**A:** java c++ python
#### Q: paddle-serving目前支持哪些协议
**A:** http rpc
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册