提交 a59d4e73 编写于 作者: B barrierye

Merge branch 'develop' of https://github.com/PaddlePaddle/Serving into grpc-client

......@@ -19,6 +19,8 @@ from __future__ import unicode_literals, absolute_import
import os
import sys
import time
import json
import requests
from paddle_serving_client import Client
from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args, show_latency
......@@ -72,7 +74,39 @@ def single_func(idx, resource):
print("unsupport batch size {}".format(args.batch_size))
elif args.request == "http":
raise ("not implemented")
reader = ChineseBertReader({"max_seq_len": 128})
fetch = ["pooled_output"]
server = "http://" + resource["endpoint"][idx % len(resource[
"endpoint"])] + "/bert/prediction"
start = time.time()
for i in range(turns):
if args.batch_size >= 1:
l_start = time.time()
feed_batch = []
b_start = time.time()
for bi in range(args.batch_size):
feed_batch.append({"words": dataset[bi]})
req = json.dumps({"feed": feed_batch, "fetch": fetch})
b_end = time.time()
if profile_flags:
sys.stderr.write(
"PROFILE\tpid:{}\tbert_pre_0:{} bert_pre_1:{}\n".format(
os.getpid(),
int(round(b_start * 1000000)),
int(round(b_end * 1000000))))
result = requests.post(
server,
data=req,
headers={"Content-Type": "application/json"})
l_end = time.time()
if latency_flags:
latency_list.append(l_end * 1000 - l_start * 1000)
else:
print("unsupport batch size {}".format(args.batch_size))
else:
raise ValueError("not implemented {} request".format(args.request))
end = time.time()
if latency_flags:
return [[end - start], latency_list]
......@@ -82,9 +116,7 @@ def single_func(idx, resource):
if __name__ == '__main__':
multi_thread_runner = MultiThreadRunner()
endpoint_list = [
"127.0.0.1:9292", "127.0.0.1:9293", "127.0.0.1:9294", "127.0.0.1:9295"
]
endpoint_list = ["127.0.0.1:9292"]
turns = 10
start = time.time()
result = multi_thread_runner.run(
......
......@@ -14,15 +14,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import numpy as np
import paddlehub as hub
import ujson
import random
import time
from paddlehub.common.logger import logger
import socket
from paddle_serving_client import Client
from paddle_serving_client.utils import benchmark_args
from paddle_serving_app.reader import ChineseBertReader
......
......@@ -73,7 +73,7 @@ def single_func(idx, resource):
print("unsupport batch size {}".format(args.batch_size))
elif args.request == "http":
py_version = 2
py_version = sys.version_info[0]
server = "http://" + resource["endpoint"][idx % len(resource[
"endpoint"])] + "/image/prediction"
start = time.time()
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from paddle_serving_client import Client
from paddle_serving_app.reader import Sequential, File2Image, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
from paddle_serving_app.reader import DBPostProcess, FilterBoxes
client = Client()
client.load_client_config("ocr_det_client/serving_client_conf.prototxt")
client.connect(["127.0.0.1:9494"])
read_image_file = File2Image()
preprocess = Sequential([
ResizeByFactor(32, 960), Div(255),
Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
(2, 0, 1))
])
post_func = DBPostProcess({
"thresh": 0.3,
"box_thresh": 0.5,
"max_candidates": 1000,
"unclip_ratio": 1.5,
"min_size": 3
})
filter_func = FilterBoxes(10, 10)
img = read_image_file(name)
ori_h, ori_w, _ = img.shape
img = preprocess(img)
new_h, new_w, _ = img.shape
ratio_list = [float(new_h) / ori_h, float(new_w) / ori_w]
outputs = client.predict(feed={"image": img}, fetch=["concat_1.tmp_0"])
dt_boxes_list = post_func(outputs["concat_1.tmp_0"], [ratio_list])
dt_boxes = filter_func(dt_boxes_list[0], [ori_h, ori_w])
......@@ -31,6 +31,7 @@ class ServingModels(object):
self.model_dict["ImageClassification"] = [
"resnet_v2_50_imagenet", "mobilenet_v2_imagenet"
]
self.model_dict["TextDetection"] = ["ocr_detection"]
self.model_dict["OCR"] = ["ocr_rec"]
image_class_url = "https://paddle-serving.bj.bcebos.com/paddle_hub_models/image/ImageClassification/"
......@@ -40,6 +41,7 @@ class ServingModels(object):
senta_url = "https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SentimentAnalysis/"
semantic_url = "https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SemanticModel/"
wordseg_url = "https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/LexicalAnalysis/"
ocr_det_url = "https://paddle-serving.bj.bcebos.com/ocr/"
self.url_dict = {}
......@@ -55,6 +57,7 @@ class ServingModels(object):
pack_url(self.model_dict, "ImageSegmentation", image_seg_url)
pack_url(self.model_dict, "ImageClassification", image_class_url)
pack_url(self.model_dict, "OCR", ocr_url)
pack_url(self.model_dict, "TextDetection", ocr_det_url)
def get_model_list(self):
return self.model_dict
......
......@@ -13,8 +13,9 @@
# limitations under the License.
from .chinese_bert_reader import ChineseBertReader
from .image_reader import ImageReader, File2Image, URL2Image, Sequential, Normalize
from .image_reader import CenterCrop, Resize, Transpose, Div, RGB2BGR, BGR2RGB
from .image_reader import CenterCrop, Resize, Transpose, Div, RGB2BGR, BGR2RGB, ResizeByFactor
from .image_reader import RCNNPostprocess, SegPostprocess, PadStride
from .image_reader import DBPostProcess, FilterBoxes
from .lac_reader import LACReader
from .senta_reader import SentaReader
from .imdb_reader import IMDBDataset
......
......@@ -11,6 +11,9 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import cv2
import os
import numpy as np
......@@ -18,6 +21,8 @@ import base64
import sys
from . import functional as F
from PIL import Image, ImageDraw
from shapely.geometry import Polygon
import pyclipper
import json
_cv2_interpolation_to_str = {cv2.INTER_LINEAR: "cv2.INTER_LINEAR", None: "None"}
......@@ -43,6 +48,196 @@ def generate_colormap(num_classes):
return color_map
class DBPostProcess(object):
"""
The post process for Differentiable Binarization (DB).
"""
def __init__(self, params):
self.thresh = params['thresh']
self.box_thresh = params['box_thresh']
self.max_candidates = params['max_candidates']
self.unclip_ratio = params['unclip_ratio']
self.min_size = 3
def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
'''
_bitmap: single map with shape (1, H, W),
whose values are binarized as {0, 1}
'''
bitmap = _bitmap
height, width = bitmap.shape
outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
if len(outs) == 3:
img, contours, _ = outs[0], outs[1], outs[2]
elif len(outs) == 2:
contours, _ = outs[0], outs[1]
num_contours = min(len(contours), self.max_candidates)
boxes = np.zeros((num_contours, 4, 2), dtype=np.int16)
scores = np.zeros((num_contours, ), dtype=np.float32)
for index in range(num_contours):
contour = contours[index]
points, sside = self.get_mini_boxes(contour)
if sside < self.min_size:
continue
points = np.array(points)
score = self.box_score_fast(pred, points.reshape(-1, 2))
if self.box_thresh > score:
continue
box = self.unclip(points).reshape(-1, 1, 2)
box, sside = self.get_mini_boxes(box)
if sside < self.min_size + 2:
continue
box = np.array(box)
if not isinstance(dest_width, int):
dest_width = dest_width.item()
dest_height = dest_height.item()
box[:, 0] = np.clip(
np.round(box[:, 0] / width * dest_width), 0, dest_width)
box[:, 1] = np.clip(
np.round(box[:, 1] / height * dest_height), 0, dest_height)
boxes[index, :, :] = box.astype(np.int16)
scores[index] = score
return boxes, scores
def unclip(self, box):
unclip_ratio = self.unclip_ratio
poly = Polygon(box)
distance = poly.area * unclip_ratio / poly.length
offset = pyclipper.PyclipperOffset()
offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
expanded = np.array(offset.Execute(distance))
return expanded
def get_mini_boxes(self, contour):
bounding_box = cv2.minAreaRect(contour)
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
index_1, index_2, index_3, index_4 = 0, 1, 2, 3
if points[1][1] > points[0][1]:
index_1 = 0
index_4 = 1
else:
index_1 = 1
index_4 = 0
if points[3][1] > points[2][1]:
index_2 = 2
index_3 = 3
else:
index_2 = 3
index_3 = 2
box = [
points[index_1], points[index_2], points[index_3], points[index_4]
]
return box, min(bounding_box[1])
def box_score_fast(self, bitmap, _box):
h, w = bitmap.shape[:2]
box = _box.copy()
xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
box[:, 0] = box[:, 0] - xmin
box[:, 1] = box[:, 1] - ymin
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
def __call__(self, pred, ratio_list):
pred = pred[:, 0, :, :]
segmentation = pred > self.thresh
boxes_batch = []
for batch_index in range(pred.shape[0]):
height, width = pred.shape[-2:]
tmp_boxes, tmp_scores = self.boxes_from_bitmap(
pred[batch_index], segmentation[batch_index], width, height)
boxes = []
for k in range(len(tmp_boxes)):
if tmp_scores[k] > self.box_thresh:
boxes.append(tmp_boxes[k])
if len(boxes) > 0:
boxes = np.array(boxes)
ratio_h, ratio_w = ratio_list[batch_index]
boxes[:, :, 0] = boxes[:, :, 0] / ratio_w
boxes[:, :, 1] = boxes[:, :, 1] / ratio_h
boxes_batch.append(boxes)
return boxes_batch
def __repr__(self):
return self.__class__.__name__ + \
" thresh: {1}, box_thresh: {2}, max_candidates: {3}, unclip_ratio: {4}, min_size: {5}".format(
self.thresh, self.box_thresh, self.max_candidates, self.unclip_ratio, self.min_size)
class FilterBoxes(object):
def __init__(self, width, height):
self.filter_width = width
self.filter_height = height
def order_points_clockwise(self, pts):
"""
reference from: https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py
# sort the points based on their x-coordinates
"""
xSorted = pts[np.argsort(pts[:, 0]), :]
# grab the left-most and right-most points from the sorted
# x-roodinate points
leftMost = xSorted[:2, :]
rightMost = xSorted[2:, :]
# now, sort the left-most coordinates according to their
# y-coordinates so we can grab the top-left and bottom-left
# points, respectively
leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
(tl, bl) = leftMost
rightMost = rightMost[np.argsort(rightMost[:, 1]), :]
(tr, br) = rightMost
rect = np.array([tl, tr, br, bl], dtype="float32")
return rect
def clip_det_res(self, points, img_height, img_width):
for pno in range(4):
points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
return points
def __call__(self, dt_boxes, image_shape):
img_height, img_width = image_shape[0:2]
dt_boxes_new = []
for box in dt_boxes:
box = self.order_points_clockwise(box)
box = self.clip_det_res(box, img_height, img_width)
rect_width = int(np.linalg.norm(box[0] - box[1]))
rect_height = int(np.linalg.norm(box[0] - box[3]))
if rect_width <= self.filter_width or \
rect_height <= self.filter_height:
continue
dt_boxes_new.append(box)
dt_boxes = np.array(dt_boxes_new)
return dt_boxes
def __repr__(self):
return self.__class__.__name__ + " filter_width: {1}, filter_height: {2}".format(
self.filter_width, self.filter_height)
class SegPostprocess(object):
def __init__(self, class_num):
self.class_num = class_num
......@@ -473,6 +668,57 @@ class Resize(object):
_cv2_interpolation_to_str[self.interpolation])
class ResizeByFactor(object):
"""Resize the input numpy array Image to a size multiple of factor which is usually required by a network
Args:
factor (int): Resize factor. make width and height multiple factor of the value of factor. Default is 32
max_side_len (int): max size of width and height. if width or height is larger than max_side_len, just resize the width or the height. Default is 2400
"""
def __init__(self, factor=32, max_side_len=2400):
self.factor = factor
self.max_side_len = max_side_len
def __call__(self, img):
h, w, _ = img.shape
resize_w = w
resize_h = h
if max(resize_h, resize_w) > self.max_side_len:
if resize_h > resize_w:
ratio = float(self.max_side_len) / resize_h
else:
ratio = float(self.max_side_len) / resize_w
else:
ratio = 1.
resize_h = int(resize_h * ratio)
resize_w = int(resize_w * ratio)
if resize_h % self.factor == 0:
resize_h = resize_h
elif resize_h // self.factor <= 1:
resize_h = self.factor
else:
resize_h = (resize_h // 32 - 1) * 32
if resize_w % self.factor == 0:
resize_w = resize_w
elif resize_w // self.factor <= 1:
resize_w = self.factor
else:
resize_w = (resize_w // self.factor - 1) * self.factor
try:
if int(resize_w) <= 0 or int(resize_h) <= 0:
return None, (None, None)
im = cv2.resize(img, (int(resize_w), int(resize_h)))
except:
print(resize_w, resize_h)
sys.exit(0)
return im
def __repr__(self):
return self.__class__.__name__ + '(factor={0}, max_side_len={1})'.format(
self.factor, self.max_side_len)
class PadStride(object):
def __init__(self, stride):
self.coarsest_stride = stride
......
......@@ -42,7 +42,8 @@ if '${PACK}' == 'ON':
REQUIRED_PACKAGES = [
'six >= 1.10.0', 'sentencepiece', 'opencv-python', 'pillow'
'six >= 1.10.0', 'sentencepiece', 'opencv-python', 'pillow',
'shapely', 'pyclipper'
]
packages=['paddle_serving_app',
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册