未验证 提交 a39d0fe6 编写于 作者: H huangjianhui 提交者: GitHub

Delete examples/Cpp directory

上级 d81ba2eb
## Image Classification
([简体中文](./README_CN.md)|English)
The example uses the ResNet50_vd model to perform the imagenet 1000 classification task.
### Get model config and sample dataset
```
sh get_model.sh
```
### Install preprocess module
```
pip3 install paddle_serving_app
```
### Inference Service(Support BRPC-Client/GRPC-Client/Http-Client)
launch server side
```
python3 -m paddle_serving_server.serve --model ResNet50_vd_model --port 9696 #cpu inference service
```
```
python3 -m paddle_serving_server.serve --model ResNet50_vd_model --port 9696 --gpu_ids 0 #gpu inference service
```
### BRPC-Client
client send inference request
```
python3 resnet50_rpc_client.py ResNet50_vd_client_config/serving_client_conf.prototxt
```
*the port of server side in this example is 9696
### GRPC-Client/Http-Client
client send inference request
```
python3 resnet50_http_client.py ResNet50_vd_client_config/serving_client_conf.prototxt
```
## 图像分类示例
(简体中文|[English](./README.md))
示例中采用ResNet50_vd模型执行imagenet 1000分类任务。
### 获取模型配置文件和样例数据
```
sh get_model.sh
```
### 安装数据预处理模块
```
pip3 install paddle_serving_app
```
### 启动服务端(支持BRPC-Client、GRPC-Client、Http-Client)
启动server端
```
python3 -m paddle_serving_server.serve --model ResNet50_vd_model --port 9696 #cpu预测服务
```
```
python3 -m paddle_serving_server.serve --model ResNet50_vd_model --port 9696 --gpu_ids 0 #gpu预测服务
```
### BRPC-Client预测
client端进行预测
```
python3 resnet50_rpc_client.py ResNet50_vd_client_config/serving_client_conf.prototxt
```
*server端示例中服务端口为9696端口
### GRPC-Client/Http-Client预测
client端进行预测
```
python3 resnet50_http_client.py ResNet50_vd_client_config/serving_client_conf.prototxt
```
# -*- coding: utf-8 -*-
#
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from __future__ import unicode_literals, absolute_import
import os
import sys
import time
import requests
import json
import base64
from paddle_serving_client import Client
from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args, show_latency
from paddle_serving_app.reader import Sequential, File2Image, Resize
from paddle_serving_app.reader import CenterCrop, RGB2BGR, Transpose, Div, Normalize
args = benchmark_args()
seq_preprocess = Sequential([
File2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True)
])
def single_func(idx, resource):
file_list = []
turns = resource["turns"]
latency_flags = False
if os.getenv("FLAGS_serving_latency"):
latency_flags = True
latency_list = []
for file_name in os.listdir("./image_data/n01440764"):
file_list.append(file_name)
img_list = []
for i in range(1000):
img_list.append("./image_data/n01440764/" + file_list[i])
profile_flags = False
if "FLAGS_profile_client" in os.environ and os.environ[
"FLAGS_profile_client"]:
profile_flags = True
if args.request == "rpc":
fetch = ["score"]
client = Client()
client.load_client_config(args.model)
client.connect([resource["endpoint"][idx % len(resource["endpoint"])]])
start = time.time()
for i in range(turns):
if args.batch_size >= 1:
l_start = time.time()
feed_batch = []
i_start = time.time()
for bi in range(args.batch_size):
img = seq_preprocess(img_list[i])
feed_batch.append({"image": img})
i_end = time.time()
if profile_flags:
print("PROFILE\tpid:{}\timage_pre_0:{} image_pre_1:{}".
format(os.getpid(),
int(round(i_start * 1000000)),
int(round(i_end * 1000000))))
result = client.predict(feed=feed_batch, fetch=fetch)
l_end = time.time()
if latency_flags:
latency_list.append(l_end * 1000 - l_start * 1000)
else:
print("unsupport batch size {}".format(args.batch_size))
elif args.request == "http":
py_version = sys.version_info[0]
server = "http://" + resource["endpoint"][idx % len(resource[
"endpoint"])] + "/image/prediction"
start = time.time()
for i in range(turns):
if py_version == 2:
image = base64.b64encode(
open("./image_data/n01440764/" + file_list[i]).read())
else:
image_path = "./image_data/n01440764/" + file_list[i]
image = base64.b64encode(open(image_path, "rb").read()).decode(
"utf-8")
req = json.dumps({"feed": [{"image": image}], "fetch": ["score"]})
r = requests.post(
server, data=req, headers={"Content-Type": "application/json"})
end = time.time()
if latency_flags:
return [[end - start], latency_list]
return [[end - start]]
if __name__ == '__main__':
multi_thread_runner = MultiThreadRunner()
endpoint_list = [
"127.0.0.1:9292", "127.0.0.1:9293", "127.0.0.1:9294", "127.0.0.1:9295"
]
turns = 100
start = time.time()
result = multi_thread_runner.run(
single_func, args.thread, {"endpoint": endpoint_list,
"turns": turns})
#result = single_func(0, {"endpoint": endpoint_list})
end = time.time()
total_cost = end - start
avg_cost = 0
for i in range(args.thread):
avg_cost += result[0][i]
avg_cost = avg_cost / args.thread
print("total cost: {}s".format(end - start))
print("each thread cost: {}s.".format(avg_cost))
print("qps: {}samples/s".format(args.batch_size * args.thread * turns /
total_cost))
if os.getenv("FLAGS_serving_latency"):
show_latency(result[1])
rm profile_log*
export CUDA_VISIBLE_DEVICES=0,1,2,3
export FLAGS_profile_server=1
export FLAGS_profile_client=1
python -m paddle_serving_server.serve --model $1 --port 9292 --thread 4 --gpu_ids 0,1,2,3 --mem_optim --ir_optim 2> elog > stdlog &
sleep 5
gpu_id=0
#save cpu and gpu utilization log
if [ -d utilization ];then
rm -rf utilization
else
mkdir utilization
fi
#warm up
$PYTHONROOT/bin/python3 benchmark.py --thread 4 --batch_size 1 --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1
echo -e "import psutil\ncpu_utilization=psutil.cpu_percent(1,False)\nprint('CPU_UTILIZATION:', cpu_utilization)\n" > cpu_utilization.py
for thread_num in 1 4 8 16
do
for batch_size in 1 4 16 64
do
job_bt=`date '+%Y%m%d%H%M%S'`
nvidia-smi --id=0 --query-compute-apps=used_memory --format=csv -lms 100 > gpu_use.log 2>&1 &
nvidia-smi --id=0 --query-gpu=utilization.gpu --format=csv -lms 100 > gpu_utilization.log 2>&1 &
gpu_memory_pid=$!
$PYTHONROOT/bin/python benchmark.py --thread $thread_num --batch_size $batch_size --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1
kill ${gpu_memory_pid}
kill `ps -ef|grep used_memory|awk '{print $2}'`
echo "model name :" $1
echo "thread num :" $thread_num
echo "batch size :" $batch_size
echo "=================Done===================="
echo "model name :$1" >> profile_log
echo "batch size :$batch_size" >> profile_log
job_et=`date '+%Y%m%d%H%M%S'`
awk 'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "MAX_GPU_MEMORY:", max}' gpu_use.log >> profile_log_$1
awk 'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "GPU_UTILIZATION:", max}' gpu_utilization.log >> profile_log_$1
rm -rf gpu_use.log gpu_utilization.log
$PYTHONROOT/bin/python ../util/show_profile.py profile $thread_num >> profile_log
tail -n 8 profile >> profile_log
echo "" >> profile_log_$1
done
done
#Divided log
awk 'BEGIN{RS="\n\n"}{i++}{print > "ResNet_log_"i}' profile_log_$1
mkdir $1_log && mv ResNet_log_* $1_log
ps -ef|grep 'serving'|grep -v grep|cut -c 9-15 | xargs kill -9
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/imagenet-example/ResNet50_vd.tar.gz
tar -xzvf ResNet50_vd.tar.gz
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/imagenet-example/ResNet101_vd.tar.gz
tar -xzvf ResNet101_vd.tar.gz
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/imagenet-example/image_data.tar.gz
tar -xzvf image_data.tar.gz
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from paddle_serving_client import HttpClient
from paddle_serving_app.reader import Sequential, URL2Image, Resize
from paddle_serving_app.reader import CenterCrop, RGB2BGR, Transpose, Div, Normalize
import time
client = HttpClient()
client.load_client_config(sys.argv[1])
'''
if you want use GRPC-client, set_use_grpc_client(True)
or you can directly use client.grpc_client_predict(...)
as for HTTP-client,set_use_grpc_client(False)(which is default)
or you can directly use client.http_client_predict(...)
'''
#client.set_use_grpc_client(True)
'''
if you want to enable Encrypt Module,uncommenting the following line
'''
#client.use_key("./key")
'''
if you want to compress,uncommenting the following line
'''
#client.set_response_compress(True)
#client.set_request_compress(True)
'''
we recommend use Proto data format in HTTP-body, set True(which is default)
if you want use JSON data format in HTTP-body, set False
'''
#client.set_http_proto(True)
client.connect(["127.0.0.1:9696"])
label_dict = {}
label_idx = 0
with open("imagenet.label") as fin:
for line in fin:
label_dict[label_idx] = line.strip()
label_idx += 1
seq = Sequential([
URL2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True)
])
start = time.time()
image_file = "https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg"
for i in range(10):
img = seq(image_file)
fetch_map = client.predict(
feed={"image": img}, fetch=["score"], batch=False)
print(fetch_map)
end = time.time()
print(end - start)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from paddle_serving_client import Client
from paddle_serving_app.reader import Sequential, URL2Image, Resize
from paddle_serving_app.reader import CenterCrop, RGB2BGR, Transpose, Div, Normalize
import time
client = Client()
client.load_client_config(sys.argv[1])
client.connect(["127.0.0.1:9696"])
label_dict = {}
label_idx = 0
with open("imagenet.label") as fin:
for line in fin:
label_dict[label_idx] = line.strip()
label_idx += 1
seq = Sequential([
URL2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True)
])
start = time.time()
image_file = "https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg"
for i in range(10):
img = seq(image_file)
fetch_map = client.predict(
feed={"image": img}, fetch=["score"], batch=False)
prob = max(fetch_map["score"][0])
label = label_dict[fetch_map["score"][0].tolist().index(prob)].strip(
).replace(",", "")
print("prediction: {}, probability: {}".format(label, prob))
end = time.time()
print(end - start)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_app.reader.image_reader import String2Image, Base64ToImage, Sequential
import base64
def test_String2Image():
with open("./daisy.jpg") as f:
img_str = f.read()
seq = Sequential([String2Image()])
img = seq(img_str)
assert (img.shape == (563, 500, 3))
def test_Base64ToImage():
with open("./daisy.jpg") as f:
img_str = f.read()
seq = Sequential([Base64ToImage()])
img = seq(base64.b64encode(img_str))
assert (img.shape == (563, 500, 3))
if __name__ == "__main__":
test_String2Image()
test_Base64ToImage()
# Image Classification
## Get Model
```
python3 -m paddle_serving_app.package --get_model mobilenet_v2_imagenet
tar -xzvf mobilenet_v2_imagenet.tar.gz
```
## RPC Service
### Start Service
```
python3 -m paddle_serving_server.serve --model mobilenet_v2_imagenet_model --gpu_ids 0 --port 9393
```
### Client Prediction
```
python3 mobilenet_tutorial.py
```
# 图像分类
## 获取模型
```
python3 -m paddle_serving_app.package --get_model mobilenet_v2_imagenet
tar -xzvf mobilenet_v2_imagenet.tar.gz
```
## RPC 服务
### 启动服务端
```
python3 -m paddle_serving_server.serve --model mobilenet_v2_imagenet_model --gpu_ids 0 --port 9393
```
### 客户端预测
```
python3 mobilenet_tutorial.py
```
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_client import Client
from paddle_serving_app.reader import Sequential, File2Image, Resize
from paddle_serving_app.reader import CenterCrop, RGB2BGR, Transpose, Div, Normalize
client = Client()
client.load_client_config(
"mobilenet_v2_imagenet_client/serving_client_conf.prototxt")
client.connect(["127.0.0.1:9393"])
seq = Sequential([
File2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True)
])
image_file = "daisy.jpg"
img = seq(image_file)
fetch_map = client.predict(feed={"image": img}, fetch=["feature_map"])
print(fetch_map["feature_map"].reshape(-1))
# Image Classification
## Get Model
```
python3 -m paddle_serving_app.package --get_model resnet_v2_50_imagenet
tar -xzvf resnet_v2_50_imagenet.tar.gz
```
## RPC Service
### Start Service
```
python3 -m paddle_serving_server.serve --model resnet_v2_50_imagenet_model --gpu_ids 0 --port 9393
```
### Client Prediction
```
python3 resnet50_v2_tutorial.py
```
# 图像分类
## 获取模型
```
python3 -m paddle_serving_app.package --get_model resnet_v2_50_imagenet
tar -xzvf resnet_v2_50_imagenet.tar.gz
```
## RPC 服务
### 启动服务端
```
python3 -m paddle_serving_server.serve --model resnet_v2_50_imagenet_model --gpu_ids 0 --port 9393
```
### 客户端预测
```
python3 resnet50_v2_tutorial.py
```
# -*- coding: utf-8 -*-
#
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from __future__ import unicode_literals, absolute_import
import os
import sys
import time
import json
import requests
import numpy as np
from paddle_serving_client import Client
from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args, show_latency
from paddle_serving_app.reader import Sequential, File2Image, Resize, CenterCrop
from paddle_serving_app.reader import RGB2BGR, Transpose, Div, Normalize
args = benchmark_args()
def single_func(idx, resource):
total_number = 0
profile_flags = False
latency_flags = False
if os.getenv("FLAGS_profile_client"):
profile_flags = True
if os.getenv("FLAGS_serving_latency"):
latency_flags = True
latency_list = []
if args.request == "rpc":
client = Client()
client.load_client_config(args.model)
client.connect([resource["endpoint"][idx % len(resource["endpoint"])]])
start = time.time()
for i in range(turns):
if args.batch_size >= 1:
l_start = time.time()
seq = Sequential([
File2Image(), Resize(256), CenterCrop(224), RGB2BGR(),
Transpose((2, 0, 1)), Div(255), Normalize(
[0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True)
])
image_file = "daisy.jpg"
img = seq(image_file)
feed_data = np.array(img)
feed_data = np.expand_dims(feed_data, 0).repeat(
args.batch_size, axis=0)
result = client.predict(
feed={"image": feed_data},
fetch=["save_infer_model/scale_0.tmp_0"],
batch=True)
l_end = time.time()
if latency_flags:
latency_list.append(l_end * 1000 - l_start * 1000)
total_number = total_number + 1
else:
print("unsupport batch size {}".format(args.batch_size))
else:
raise ValueError("not implemented {} request".format(args.request))
end = time.time()
if latency_flags:
return [[end - start], latency_list, [total_number]]
else:
return [[end - start]]
if __name__ == '__main__':
multi_thread_runner = MultiThreadRunner()
endpoint_list = ["127.0.0.1:9393"]
turns = 1
start = time.time()
result = multi_thread_runner.run(
single_func, args.thread, {"endpoint": endpoint_list,
"turns": turns})
end = time.time()
total_cost = end - start
total_number = 0
avg_cost = 0
for i in range(args.thread):
avg_cost += result[0][i]
total_number += result[2][i]
avg_cost = avg_cost / args.thread
print("total cost-include init: {}s".format(total_cost))
print("each thread cost: {}s. ".format(avg_cost))
print("qps: {}samples/s".format(args.batch_size * total_number / (
avg_cost * args.thread)))
print("qps(request): {}samples/s".format(total_number / (avg_cost *
args.thread)))
print("total count: {} ".format(total_number))
if os.getenv("FLAGS_serving_latency"):
show_latency(result[1])
rm profile_log*
rm -rf resnet_log*
export CUDA_VISIBLE_DEVICES=0,1,2,3
export FLAGS_profile_server=1
export FLAGS_profile_client=1
export FLAGS_serving_latency=1
gpu_id=3
#save cpu and gpu utilization log
if [ -d utilization ];then
rm -rf utilization
else
mkdir utilization
fi
#start server
python3.6 -m paddle_serving_server.serve --model $1 --port 9393 --thread 10 --gpu_ids $gpu_id --use_trt --ir_optim > elog 2>&1 &
sleep 15
#warm up
python3.6 benchmark.py --thread 1 --batch_size 1 --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1
echo -e "import psutil\nimport time\nwhile True:\n\tcpu_res = psutil.cpu_percent()\n\twith open('cpu.txt', 'a+') as f:\n\t\tf.write(f'{cpu_res}\\\n')\n\ttime.sleep(0.1)" > cpu.py
for thread_num in 1 2 4 8 16
do
for batch_size in 1 4 8 16 32
do
job_bt=`date '+%Y%m%d%H%M%S'`
nvidia-smi --id=$gpu_id --query-compute-apps=used_memory --format=csv -lms 100 > gpu_memory_use.log 2>&1 &
nvidia-smi --id=$gpu_id --query-gpu=utilization.gpu --format=csv -lms 100 > gpu_utilization.log 2>&1 &
rm -rf cpu.txt
python3.6 cpu.py &
gpu_memory_pid=$!
python3.6 benchmark.py --thread $thread_num --batch_size $batch_size --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1
kill `ps -ef|grep used_memory|awk '{print $2}'` > /dev/null
kill `ps -ef|grep utilization.gpu|awk '{print $2}'` > /dev/null
kill `ps -ef|grep cpu.py|awk '{print $2}'` > /dev/null
echo "model_name:" $1
echo "thread_num:" $thread_num
echo "batch_size:" $batch_size
echo "=================Done===================="
echo "model_name:$1" >> profile_log_$1
echo "batch_size:$batch_size" >> profile_log_$1
job_et=`date '+%Y%m%d%H%M%S'`
awk 'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "CPU_UTILIZATION:", max}' cpu.txt >> profile_log_$1
#awk 'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "MAX_GPU_MEMORY:", max}' gpu_memory_use.log >> profile_log_$1
#awk 'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "GPU_UTILIZATION:", max}' gpu_utilization.log >> profile_log_$1
grep -av '^0 %' gpu_utilization.log > gpu_utilization.log.tmp
awk 'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "MAX_GPU_MEMORY:", max}' gpu_memory_use.log >> profile_log_$1
awk -F" " '{sum+=$1} END {print "GPU_UTILIZATION:", sum/NR, sum, NR }' gpu_utilization.log.tmp >> profile_log_$1
rm -rf gpu_memory_use.log gpu_utilization.log gpu_utilization.log.tmp
python3.6 ../util/show_profile.py profile $thread_num >> profile_log_$1
tail -n 10 profile >> profile_log_$1
echo "" >> profile_log_$1
done
done
#Divided log
awk 'BEGIN{RS="\n\n"}{i++}{print > "resnet_log_"i}' profile_log_$1
mkdir resnet_log && mv resnet_log_* resnet_log
ps -ef|grep 'serving'|grep -v grep|cut -c 9-15 | xargs kill -9
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_app.reader import Sequential, File2Image, Resize, CenterCrop
from paddle_serving_app.reader import RGB2BGR, Transpose, Div, Normalize
from paddle_serving_app.local_predict import LocalPredictor
import sys
debugger = LocalPredictor()
debugger.load_model_config(sys.argv[1], gpu=True)
seq = Sequential([
File2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True)
])
image_file = "daisy.jpg"
img = seq(image_file)
fetch_map = debugger.predict(feed={"image": img}, fetch=["feature_map"])
print(fetch_map["feature_map"].reshape(-1))
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_client import Client
from paddle_serving_app.reader import Sequential, File2Image, Resize, CenterCrop
from paddle_serving_app.reader import RGB2BGR, Transpose, Div, Normalize
client = Client()
client.load_client_config(
"resnet_v2_50_imagenet_client/serving_client_conf.prototxt")
client.connect(["127.0.0.1:9393"])
seq = Sequential([
File2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True)
])
image_file = "daisy.jpg"
img = seq(image_file)
fetch_map = client.predict(feed={"image": img}, fetch=["score"])
print(fetch_map["score"].reshape(-1))
if [ ! -x "ResNet50.tar.gz"]; then
wget https://paddle-inference-dist.bj.bcebos.com/AI-Rank/models/Paddle/ResNet50.tar.gz
fi
tar -xzvf ResNet50.tar.gz
python3.6 -m paddle_serving_client.convert --dirname ./ResNet50 --model_filename model --params_filename params
bash benchmark.sh serving_server serving_client
# Serve models from Paddle Detection
(English|[简体中文](./README_CN.md))
### Introduction
PaddleDetection flying paddle target detection development kit is designed to help developers complete the whole development process of detection model formation, training, optimization and deployment faster and better. For details, see [Github](https://github.com/PaddlePaddle/PaddleDetection/tree/master)
This article mainly introduces the deployment of Paddle Detection's dynamic graph model on Serving.
Paddle Detection provides a large number of [Model Zoo](https://github.com/PaddlePaddle/PaddleDetection/blob/master/docs/MODEL_ZOO_cn.md), these model libraries can be used in Paddle Serving with export tools Model. For the export tutorial, please refer to [Paddle Detection Export Model Tutorial (Simplified Chinese)](https://github.com/PaddlePaddle/PaddleDetection/blob/master/deploy/EXPORT_MODEL.md).
### Serving example
Several examples of PaddleDetection models used in Serving are given in this folder
All examples support TensorRT.
- [Faster RCNN](./faster_rcnn_r50_fpn_1x_coco)
- [PPYOLO](./ppyolo_r50vd_dcn_1x_coco)
- [TTFNet](./ttfnet_darknet53_1x_coco)
- [YOLOv3](./yolov3_darknet53_270e_coco)
- [HRNet](./faster_rcnn_hrnetv2p_w18_1x)
- [Fcos](./fcos_dcn_r50_fpn_1x_coco)
- [SSD](./ssd_vgg16_300_240e_voc/)
## 使用Paddle Detection模型
([English](./README.md)|简体中文)
### 简介
PaddleDetection飞桨目标检测开发套件,旨在帮助开发者更快更好地完成检测模型的组建、训练、优化及部署等全开发流程。详情参见[Github](https://github.com/PaddlePaddle/PaddleDetection/tree/master)
本文主要是介绍Paddle Detection的动态图模型在Serving上的部署。
### 导出模型
Paddle Detection提供了大量的[模型库](https://github.com/PaddlePaddle/PaddleDetection/blob/master/docs/MODEL_ZOO_cn.md), 这些模型库配合导出工具都可以得到可以用于Paddle Serving的模型。导出教程参见[Paddle Detection模型导出教程](https://github.com/PaddlePaddle/PaddleDetection/blob/master/deploy/EXPORT_MODEL.md)
### Serving示例
本文件夹下给出了多个PaddleDetection模型用于Serving的范例
- [Faster RCNN](./faster_rcnn_r50_fpn_1x_coco)
- [PPYOLO](./ppyolo_r50vd_dcn_1x_coco)
- [TTFNet](./ttfnet_darknet53_1x_coco)
- [YOLOv3](./yolov3_darknet53_270e_coco)
- [HRNet](./faster_rcnn_hrnetv2p_w18_1x)
- [Fcos](./fcos_dcn_r50_fpn_1x_coco)
- [SSD](./ssd_vgg16_300_240e_voc/)
# Blazeface
## Get Model
```
python3 -m paddle_serving_app.package --get_model blazeface
tar -xf blazeface.tar.gz
```
## RPC Service
### Start Service
```
python3 -m paddle_serving_server.serve --model serving_server --port 9494
```
### Client Prediction
```
python3 test_client.py serving_client/serving_client_conf.prototxt test.jpg
```
the result is in `output` folder, including a json file and image file with bounding boxes.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_client import Client
from paddle_serving_app.reader import *
import sys
import numpy as np
from paddle_serving_app.reader import BlazeFacePostprocess
preprocess = Sequential([
File2Image(),
Normalize([104, 117, 123], [127.502231, 127.502231, 127.502231], False)
])
postprocess = BlazeFacePostprocess("label_list.txt", "output")
client = Client()
client.load_client_config(sys.argv[1])
client.connect(['127.0.0.1:9494'])
im_0 = preprocess(sys.argv[2])
tmp = Transpose((2, 0, 1))
im = tmp(im_0)
fetch_map = client.predict(
feed={"image": im}, fetch=["detection_output_0.tmp_0"])
fetch_map["image"] = sys.argv[2]
fetch_map["im_shape"] = im_0.shape
postprocess(fetch_map)
# Cascade RCNN model on Paddle Serving
([简体中文](./README_CN.md)|English)
### Get The Cascade RCNN Model
```
sh get_data.sh
```
If you want to have more detection models, please refer to [Paddle Detection Model Zoo](https://github.com/PaddlePaddle/PaddleDetection/blob/release/0.2/docs/MODEL_ZOO_cn.md)
### Start the service
```
python3 -m paddle_serving_server.serve --model serving_server --port 9292 --gpu_id 0
```
### Perform prediction
```
python3 test_client.py 000000570688.jpg
```
Image with bounding boxes and json result would be saved in `output` folder.
# 使用Paddle Serving部署Cascade RCNN模型
(简体中文|[English](./README.md))
## 获得Cascade RCNN模型
```
sh get_data.sh
```
如果你想要更多的检测模型,请参考[Paddle检测模型库](https://github.com/PaddlePaddle/PaddleDetection/blob/release/0.2/docs/MODEL_ZOO_cn.md)
### 启动服务
```
python3 -m paddle_serving_server.serve --model serving_server --port 9292 --gpu_id 0
```
### 执行预测
```
python3 test_client.py 000000570688.jpg
```
客户端已经为图片做好了后处理,在`output`文件夹下存放各个框的json格式信息还有后处理结果图片。
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/cascade_mask_rcnn_r50_vd_fpn_ssld_2x_coco_serving.tar.gz
tar xf cascade_mask_rcnn_r50_vd_fpn_ssld_2x_coco_serving.tar.gz
person
bicycle
car
motorcycle
airplane
bus
train
truck
boat
traffic light
fire hydrant
stop sign
parking meter
bench
bird
cat
dog
horse
sheep
cow
elephant
bear
zebra
giraffe
backpack
umbrella
handbag
tie
suitcase
frisbee
skis
snowboard
sports ball
kite
baseball bat
baseball glove
skateboard
surfboard
tennis racket
bottle
wine glass
cup
fork
knife
spoon
bowl
banana
apple
sandwich
orange
broccoli
carrot
hot dog
pizza
donut
cake
chair
couch
potted plant
bed
dining table
toilet
tv
laptop
mouse
remote
keyboard
cell phone
microwave
oven
toaster
sink
refrigerator
book
clock
vase
scissors
teddy bear
hair drier
toothbrush
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import numpy as np
from paddle_serving_client import Client
from paddle_serving_app.reader import *
import cv2
preprocess = DetectionSequential([
DetectionFile2Image(),
DetectionResize((800, 1333), True, interpolation=2),
DetectionNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True),
DetectionTranspose((2,0,1)),
DetectionPadStride(32)
])
postprocess = RCNNPostprocess("label_list.txt", "output")
client = Client()
client.load_client_config("serving_client/serving_client_conf.prototxt")
client.connect(['127.0.0.1:9292'])
im, im_info = preprocess(sys.argv[1])
fetch_map = client.predict(
feed={
"image": im,
"im_shape": np.array(list(im.shape[1:])).reshape(-1),
"scale_factor": im_info['scale_factor'],
},
fetch=["save_infer_model/scale_0.tmp_1"],
batch=False)
print(fetch_map)
fetch_map["image"] = sys.argv[1]
postprocess(fetch_map)
# Faster RCNN HRNet model on Paddle Serving
([简体中文](./README_CN.md)|English)
### Get The Faster RCNN HRNet Model
```
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/faster_rcnn_hrnetv2p_w18_1x.tar.gz
```
### Start the service
```
tar xf faster_rcnn_hrnetv2p_w18_1x.tar.gz
python3 -m paddle_serving_server.serve --model serving_server --port 9494 --gpu_ids 0
```
This model support TensorRT, if you want a faster inference, please use `--use_trt`. But you need to do some extra work.
Please reference to https://github.com/PaddlePaddle/Paddle-Inference-Demo/blob/master/c%2B%2B/paddle-trt/trt_dynamic_shape_test.cc#L40
### Prediction
```
python3 test_client.py 000000570688.jpg
```
# 使用Paddle Serving部署Faster RCNN HRNet模型
(简体中文|[English](./README.md))
## 获得Faster RCNN HRNet模型
```
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/faster_rcnn_hrnetv2p_w18_1x.tar.gz
```
### 启动服务
```
tar xf faster_rcnn_hrnetv2p_w18_1x.tar.gz
python3 -m paddle_serving_server.serve --model serving_server --port 9494 --gpu_ids 0
```
该模型支持TensorRT,如果想要更快的预测速度,可以开启`--use_trt`选项,但此时需要额外设置子图的TRT变长最大最小最优shape.
请参考https://github.com/PaddlePaddle/Paddle-Inference-Demo/blob/master/c%2B%2B/paddle-trt/trt_dynamic_shape_test.cc#L40
### 执行预测
```
python3 test_client.py 000000570688.jpg
```
person
bicycle
car
motorcycle
airplane
bus
train
truck
boat
traffic light
fire hydrant
stop sign
parking meter
bench
bird
cat
dog
horse
sheep
cow
elephant
bear
zebra
giraffe
backpack
umbrella
handbag
tie
suitcase
frisbee
skis
snowboard
sports ball
kite
baseball bat
baseball glove
skateboard
surfboard
tennis racket
bottle
wine glass
cup
fork
knife
spoon
bowl
banana
apple
sandwich
orange
broccoli
carrot
hot dog
pizza
donut
cake
chair
couch
potted plant
bed
dining table
toilet
tv
laptop
mouse
remote
keyboard
cell phone
microwave
oven
toaster
sink
refrigerator
book
clock
vase
scissors
teddy bear
hair drier
toothbrush
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import numpy as np
from paddle_serving_client import Client
from paddle_serving_app.reader import *
import cv2
preprocess = DetectionSequential([
DetectionFile2Image(),
DetectionResize((800, 1333), True, interpolation=2),
DetectionNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True),
DetectionTranspose((2,0,1)),
DetectionPadStride(32)
])
postprocess = RCNNPostprocess("label_list.txt", "output")
client = Client()
client.load_client_config("serving_client/serving_client_conf.prototxt")
client.connect(['127.0.0.1:9494'])
im, im_info = preprocess(sys.argv[1])
fetch_map = client.predict(
feed={
"image": im,
"im_shape": np.array(list(im.shape[1:])).reshape(-1),
"scale_factor": im_info['scale_factor'],
},
fetch=["save_infer_model/scale_0.tmp_1"],
batch=False)
print(fetch_map)
fetch_map["image"] = sys.argv[1]
postprocess(fetch_map)
# Faster RCNN model on Paddle Serving
([简体中文](./README_CN.md)|English)
### Get The Faster RCNN Model
```
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/2.0/faster_rcnn_r50_fpn_1x_coco.tar
```
### Start the service
```
tar xf faster_rcnn_r50_fpn_1x_coco.tar
python3 -m paddle_serving_server.serve --model serving_server --port 9494 --gpu_ids 0
```
This model support TensorRT, if you want a faster inference, please use `--use_trt`. But you need to do some extra work.
Please reference to https://github.com/PaddlePaddle/Paddle-Inference-Demo/blob/master/c%2B%2B/paddle-trt/trt_dynamic_shape_test.cc#L40
### Perform prediction
```
python3 test_client.py 000000570688.jpg
```
## 3. Result analysis
<p align = "center">
    <br>
<img src = '000000570688.jpg'>
    <br>
<p>
This is the input picture
  
<p align = "center">
    <br>
<img src = '000000570688_bbox.jpg'>
    <br>
<p>
This is the picture after adding bbox. You can see that the client has done post-processing for the picture. In addition, the output/bbox.json also has the number and coordinate information of each box.
# 使用Paddle Serving部署Faster RCNN模型
(简体中文|[English](./README.md))
## 获得Faster RCNN模型
```
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/2.0/faster_rcnn_r50_fpn_1x_coco.tar
```
### 启动服务
```
tar xf faster_rcnn_r50_fpn_1x_coco.tar
python3 -m paddle_serving_server.serve --model serving_server --port 9494 --gpu_ids 0
```
该模型支持TensorRT,如果想要更快的预测速度,可以开启`--use_trt`选项,但此时需要额外设置子图的TRT变长最大最小最优shape.
请参考https://github.com/PaddlePaddle/Paddle-Inference-Demo/blob/master/c%2B%2B/paddle-trt/trt_dynamic_shape_test.cc#L40
### 执行预测
```
python3 test_client.py 000000570688.jpg
```
## 3. 结果分析
<p align="center">
<br>
<img src='000000570688.jpg' >
<br>
<p>
这是输入图片
<p align="center">
<br>
<img src='000000570688_bbox.jpg' >
<br>
<p>
这是实现添加了bbox之后的图片,可以看到客户端已经为图片做好了后处理,此外在output/bbox.json也有各个框的编号和坐标信息。
person
bicycle
car
motorcycle
airplane
bus
train
truck
boat
traffic light
fire hydrant
stop sign
parking meter
bench
bird
cat
dog
horse
sheep
cow
elephant
bear
zebra
giraffe
backpack
umbrella
handbag
tie
suitcase
frisbee
skis
snowboard
sports ball
kite
baseball bat
baseball glove
skateboard
surfboard
tennis racket
bottle
wine glass
cup
fork
knife
spoon
bowl
banana
apple
sandwich
orange
broccoli
carrot
hot dog
pizza
donut
cake
chair
couch
potted plant
bed
dining table
toilet
tv
laptop
mouse
remote
keyboard
cell phone
microwave
oven
toaster
sink
refrigerator
book
clock
vase
scissors
teddy bear
hair drier
toothbrush
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import numpy as np
from paddle_serving_client import Client
from paddle_serving_app.reader import *
import cv2
preprocess = DetectionSequential([
DetectionFile2Image(),
DetectionNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True),
DetectionResize(
(800, 1333), True, interpolation=cv2.INTER_LINEAR),
DetectionTranspose((2,0,1)),
DetectionPadStride(128)
])
postprocess = RCNNPostprocess("label_list.txt", "output")
client = Client()
client.load_client_config("serving_client/serving_client_conf.prototxt")
client.connect(['127.0.0.1:9494'])
im, im_info = preprocess(sys.argv[1])
fetch_map = client.predict(
feed={
"image": im,
"im_shape": np.array(list(im.shape[1:])).reshape(-1),
"scale_factor": im_info['scale_factor'],
},
fetch=["save_infer_model/scale_0.tmp_1"],
batch=False)
fetch_map["image"] = sys.argv[1]
postprocess(fetch_map)
# FCOS model on Paddle Serving
([简体中文](./README_CN.md)|English)
### Get Model
```
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/2.0/fcos_dcn_r50_fpn_1x_coco.tar
```
### Start the service
```
tar xf fcos_dcn_r50_fpn_1x_coco.tar
python3 -m paddle_serving_server.serve --model serving_server --port 9494 --gpu_ids 0
```
This model support TensorRT, if you want a faster inference, please use `--use_trt`.
### Perform prediction
```
python3 test_client.py 000000014439.jpg
```
# 使用Paddle Serving部署FCOS模型
(简体中文|[English](./README.md))
## 获得模型
```
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/2.0/fcos_dcn_r50_fpn_1x_coco.tar
```
### 启动服务
```
tar xf fcos_dcn_r50_fpn_1x_coco.tar
python3 -m paddle_serving_server.serve --model serving_server --port 9494 --gpu_ids 0
```
该模型支持TensorRT,如果想要更快的预测速度,可以开启`--use_trt`选项。
### 执行预测
```
python3 test_client.py 000000014439.jpg
```
person
bicycle
car
motorcycle
airplane
bus
train
truck
boat
traffic light
fire hydrant
stop sign
parking meter
bench
bird
cat
dog
horse
sheep
cow
elephant
bear
zebra
giraffe
backpack
umbrella
handbag
tie
suitcase
frisbee
skis
snowboard
sports ball
kite
baseball bat
baseball glove
skateboard
surfboard
tennis racket
bottle
wine glass
cup
fork
knife
spoon
bowl
banana
apple
sandwich
orange
broccoli
carrot
hot dog
pizza
donut
cake
chair
couch
potted plant
bed
dining table
toilet
tv
laptop
mouse
remote
keyboard
cell phone
microwave
oven
toaster
sink
refrigerator
book
clock
vase
scissors
teddy bear
hair drier
toothbrush
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import numpy as np
from paddle_serving_client import Client
from paddle_serving_app.reader import *
import cv2
preprocess = DetectionSequential([
DetectionFile2Image(),
DetectionNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True),
DetectionResize(
(800, 1333), True, interpolation=cv2.INTER_LINEAR),
DetectionTranspose((2,0,1)),
DetectionPadStride(128)
])
postprocess = RCNNPostprocess("label_list.txt", "output")
client = Client()
client.load_client_config("serving_client/serving_client_conf.prototxt")
client.connect(['127.0.0.1:9494'])
im, im_info = preprocess(sys.argv[1])
fetch_map = client.predict(
feed={
"image": im,
"scale_factor": im_info['scale_factor'],
},
fetch=["save_infer_model/scale_0.tmp_1"],
batch=False)
print(fetch_map)
fetch_map["image"] = sys.argv[1]
postprocess(fetch_map)
# PP-YOLO model on Paddle Serving
([简体中文](./README_CN.md)|English)
### Get The Model
```
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/2.0/ppyolo_r50vd_dcn_1x_coco.tar
```
### Start the service
```
tar xf ppyolo_r50vd_dcn_1x_coco.tar
python3 -m paddle_serving_server.serve --model serving_server --port 9494 --gpu_ids 0
```
This model support TensorRT, if you want a faster inference, please use `--use_trt`.
### Perform prediction
```
python3 test_client.py 000000570688.jpg
```
# 使用Paddle Serving部署PP-YOLO模型
(简体中文|[English](./README.md))
## 获得模型
```
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/2.0/ppyolo_r50vd_dcn_1x_coco.tar
```
### 启动服务
```
tar xf ppyolo_r50vd_dcn_1x_coco.tar
python3 -m paddle_serving_server.serve --model serving_server --port 9494 --gpu_ids 0
```
该模型支持TensorRT,如果想要更快的预测速度,可以开启`--use_trt`选项。
### 执行预测
```
python3 test_client.py 000000570688.jpg
```
person
bicycle
car
motorcycle
airplane
bus
train
truck
boat
traffic light
fire hydrant
stop sign
parking meter
bench
bird
cat
dog
horse
sheep
cow
elephant
bear
zebra
giraffe
backpack
umbrella
handbag
tie
suitcase
frisbee
skis
snowboard
sports ball
kite
baseball bat
baseball glove
skateboard
surfboard
tennis racket
bottle
wine glass
cup
fork
knife
spoon
bowl
banana
apple
sandwich
orange
broccoli
carrot
hot dog
pizza
donut
cake
chair
couch
potted plant
bed
dining table
toilet
tv
laptop
mouse
remote
keyboard
cell phone
microwave
oven
toaster
sink
refrigerator
book
clock
vase
scissors
teddy bear
hair drier
toothbrush
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import numpy as np
from paddle_serving_client import Client
from paddle_serving_app.reader import *
import cv2
preprocess = DetectionSequential([
DetectionFile2Image(),
DetectionNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True),
DetectionResize(
(608, 608), False, interpolation=2),
DetectionTranspose((2,0,1))
])
postprocess = RCNNPostprocess("label_list.txt", "output")
client = Client()
client.load_client_config("serving_client/serving_client_conf.prototxt")
client.connect(['127.0.0.1:9494'])
im, im_info = preprocess(sys.argv[1])
fetch_map = client.predict(
feed={
"image": im,
"im_shape": np.array(list(im.shape[1:])).reshape(-1),
"scale_factor": im_info['scale_factor'],
},
fetch=["save_infer_model/scale_0.tmp_1"],
batch=False)
fetch_map["image"] = sys.argv[1]
postprocess(fetch_map)
# SSD model on Paddle Serving
([简体中文](./README_CN.md)|English)
### Get Model
```
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/2.0/ssd_vgg16_300_240e_voc.tar
```
### Start the service
```
tar xf ssd_vgg16_300_240e_voc.tar
python3 -m paddle_serving_server.serve --model serving_server --port 9494 --gpu_ids 0
```
This model support TensorRT, if you want a faster inference, please use `--use_trt`.
### Perform prediction
```
python3 test_client.py 000000014439.jpg
```
# 使用Paddle Serving部署SSD模型
(简体中文|[English](./README.md))
## 获得模型
```
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/2.0/ssd_vgg16_300_240e_voc.tar
```
### 启动服务
```
tar xf ssd_vgg16_300_240e_voc.tar
python3 -m paddle_serving_server.serve --model serving_server --port 9494 --gpu_ids 0
```
该模型支持TensorRT,如果想要更快的预测速度,可以开启`--use_trt`选项。
### 执行预测
```
python3 test_client.py 000000014439.jpg
```
aeroplane
bicycle
bird
boat
bottle
bus
car
cat
chair
cow
diningtable
dog
horse
motorbike
person
pottedplant
sheep
sofa
train
tvmonitor
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import numpy as np
from paddle_serving_client import Client
from paddle_serving_app.reader import *
import cv2
preprocess = DetectionSequential([
DetectionFile2Image(),
DetectionResize(
(300, 300), False, interpolation=cv2.INTER_LINEAR),
DetectionNormalize([104.0, 117.0, 123.0], [1.0, 1.0, 1.0], False),
DetectionTranspose((2,0,1)),
])
postprocess = RCNNPostprocess("label_list.txt", "output")
client = Client()
client.load_client_config("serving_client/serving_client_conf.prototxt")
client.connect(['127.0.0.1:9494'])
im, im_info = preprocess(sys.argv[1])
fetch_map = client.predict(
feed={
"image": im,
"im_shape": np.array(list(im.shape[1:])).reshape(-1),
"scale_factor": im_info['scale_factor'],
},
fetch=["save_infer_model/scale_0.tmp_1"],
batch=False)
print(fetch_map)
fetch_map["image"] = sys.argv[1]
postprocess(fetch_map)
# TTF-Net model on Paddle Serving
([简体中文](./README_CN.md)|English)
### Get Model
```
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/ttfnet_darknet53_1x_coco.tar
```
### Start the service
```
tar xf ttfnet_darknet53_1x_coco.tar
python3 -m paddle_serving_server.serve --model serving_server --port 9494 --gpu_ids 0
```
This model support TensorRT, if you want a faster inference, please use `--use_trt`.
### Perform prediction
```
python3 test_client.py 000000570688.jpg
```
# 使用Paddle Serving部署TTF-Net模型
(简体中文|[English](./README.md))
## 获得模型
```
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/ttfnet_darknet53_1x_coco.tar
```
### 启动服务
```
tar xf ttfnet_darknet53_1x_coco.tar
python3 -m paddle_serving_server.serve --model serving_server --port 9494 --gpu_ids 0
```
该模型支持TensorRT,如果想要更快的预测速度,可以开启`--use_trt`选项。
### 执行预测
```
python3 test_client.py 000000570688.jpg
```
person
bicycle
car
motorcycle
airplane
bus
train
truck
boat
traffic light
fire hydrant
stop sign
parking meter
bench
bird
cat
dog
horse
sheep
cow
elephant
bear
zebra
giraffe
backpack
umbrella
handbag
tie
suitcase
frisbee
skis
snowboard
sports ball
kite
baseball bat
baseball glove
skateboard
surfboard
tennis racket
bottle
wine glass
cup
fork
knife
spoon
bowl
banana
apple
sandwich
orange
broccoli
carrot
hot dog
pizza
donut
cake
chair
couch
potted plant
bed
dining table
toilet
tv
laptop
mouse
remote
keyboard
cell phone
microwave
oven
toaster
sink
refrigerator
book
clock
vase
scissors
teddy bear
hair drier
toothbrush
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import numpy as np
from paddle_serving_client import Client
from paddle_serving_app.reader import *
import cv2
preprocess = DetectionSequential([
DetectionFile2Image(),
DetectionResize(
(512, 512), False, interpolation=cv2.INTER_LINEAR),
DetectionNormalize([123.675, 116.28, 103.53], [58.395, 57.12, 57.375], False),
DetectionTranspose((2,0,1))
])
postprocess = RCNNPostprocess("label_list.txt", "output")
client = Client()
client.load_client_config("serving_client/serving_client_conf.prototxt")
client.connect(['127.0.0.1:9494'])
im, im_info = preprocess(sys.argv[1])
fetch_map = client.predict(
feed={
"image": im,
"im_shape": np.array(list(im.shape[1:])).reshape(-1),
"scale_factor": im_info['scale_factor'],
},
fetch=["save_infer_model/scale_0.tmp_1"],
batch=False)
print(fetch_map)
# YOLOv3 model on Paddle Serving
([简体中文](./README_CN.md)|English)
### Get Model
```
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/2.0/yolov3_darknet53_270e_coco.tar
```
### Start the service
```
tar xf yolov3_darknet53_270e_coco.tar
python3 -m paddle_serving_server.serve --model serving_server --port 9494 --gpu_ids 0
```
This model support TensorRT, if you want a faster inference, please use `--use_trt`.
### Perform prediction
```
python3 test_client.py 000000570688.jpg
```
# 使用Paddle Serving部署YOLOv3模型
(简体中文|[English](./README.md))
## 获得模型
```
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/2.0/yolov3_darknet53_270e_coco.tar
```
### 启动服务
```
tar xf yolov3_darknet53_270e_coco.tar
python3 -m paddle_serving_server.serve --model serving_server --port 9494 --gpu_ids 0
```
该模型支持TensorRT,如果想要更快的预测速度,可以开启`--use_trt`选项。
### 执行预测
```
python3 test_client.py 000000570688.jpg
```
person
bicycle
car
motorcycle
airplane
bus
train
truck
boat
traffic light
fire hydrant
stop sign
parking meter
bench
bird
cat
dog
horse
sheep
cow
elephant
bear
zebra
giraffe
backpack
umbrella
handbag
tie
suitcase
frisbee
skis
snowboard
sports ball
kite
baseball bat
baseball glove
skateboard
surfboard
tennis racket
bottle
wine glass
cup
fork
knife
spoon
bowl
banana
apple
sandwich
orange
broccoli
carrot
hot dog
pizza
donut
cake
chair
couch
potted plant
bed
dining table
toilet
tv
laptop
mouse
remote
keyboard
cell phone
microwave
oven
toaster
sink
refrigerator
book
clock
vase
scissors
teddy bear
hair drier
toothbrush
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import numpy as np
from paddle_serving_client import Client
from paddle_serving_app.reader import *
import cv2
preprocess = DetectionSequential([
DetectionFile2Image(),
DetectionResize(
(608, 608), False, interpolation=2),
DetectionNormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True),
DetectionTranspose((2,0,1)),
])
postprocess = RCNNPostprocess("label_list.txt", "output")
client = Client()
client.load_client_config("serving_client/serving_client_conf.prototxt")
client.connect(['127.0.0.1:9494'])
im, im_info = preprocess(sys.argv[1])
fetch_map = client.predict(
feed={
"image": im,
"im_shape": np.array(list(im.shape[1:])).reshape(-1),
"scale_factor": im_info['scale_factor'],
},
fetch=["save_infer_model/scale_0.tmp_1"],
batch=False)
fetch_map["image"] = sys.argv[1]
postprocess(fetch_map)
# Yolov4 Detection Service
([简体中文](README_CN.md)|English)
## Get Model
```
python3 -m paddle_serving_app.package --get_model yolov4
tar -xzvf yolov4.tar.gz
```
## Start RPC Service
```
python3 -m paddle_serving_server.serve --model yolov4_model --port 9393 --gpu_ids 0
```
## Prediction
```
python3 test_client.py 000000570688.jpg
```
After the prediction is completed, a json file to save the prediction result and a picture with the detection result box will be generated in the `./outpu folder.
# Yolov4 检测服务
(简体中文|[English](README.md))
## 获取模型
```
python3 -m paddle_serving_app.package --get_model yolov4
tar -xzvf yolov4.tar.gz
```
## 启动RPC服务
```
python3 -m paddle_serving_server.serve --model yolov4_model --port 9393 --gpu_ids 0
```
## 预测
```
python3 test_client.py 000000570688.jpg
```
预测完成会在`./output`文件夹下生成保存预测结果的json文件以及标出检测结果框的图片。
person
bicycle
car
motorcycle
airplane
bus
train
truck
boat
traffic light
fire hydrant
stop sign
parking meter
bench
bird
cat
dog
horse
sheep
cow
elephant
bear
zebra
giraffe
backpack
umbrella
handbag
tie
suitcase
frisbee
skis
snowboard
sports ball
kite
baseball bat
baseball glove
skateboard
surfboard
tennis racket
bottle
wine glass
cup
fork
knife
spoon
bowl
banana
apple
sandwich
orange
broccoli
carrot
hot dog
pizza
donut
cake
chair
couch
potted plant
bed
dining table
toilet
tv
laptop
mouse
remote
keyboard
cell phone
microwave
oven
toaster
sink
refrigerator
book
clock
vase
scissors
teddy bear
hair drier
toothbrush
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import numpy as np
from paddle_serving_client import Client
from paddle_serving_app.reader import *
import cv2
preprocess = Sequential([
File2Image(), BGR2RGB(), Resize(
(608, 608), interpolation=cv2.INTER_LINEAR), Div(255.0), Transpose(
(2, 0, 1))
])
postprocess = RCNNPostprocess("label_list.txt", "output", [608, 608])
client = Client()
client.load_client_config("yolov4_client/serving_client_conf.prototxt")
client.connect(['127.0.0.1:9393'])
im = preprocess(sys.argv[1])
fetch_map = client.predict(
feed={
"image": im,
"im_size": np.array(list(im.shape[1:])),
},
fetch=["save_infer_model/scale_0.tmp_0"],
batch=False)
fetch_map["image"] = sys.argv[1]
postprocess(fetch_map)
Http## Bert as service
([简体中文](./README_CN.md)|English)
In the example, a BERT model is used for semantic understanding prediction, and the text is represented as a vector, which can be used for further analysis and prediction.
If your python version is 3.X, replace the 'pip' field in the following command with 'pip3',replace 'python' with 'python3'.
### Getting Model
method 1:
This example use model [BERT Chinese Model](https://www.paddlepaddle.org.cn/hubdetail?name=bert_chinese_L-12_H-768_A-12&en_category=SemanticModel) from [Paddlehub](https://github.com/PaddlePaddle/PaddleHub).
Install paddlehub first
```
pip3 install paddlehub
```
run
```
python3 prepare_model.py 128
```
**PaddleHub only support Python 3.5+**
the 128 in the command above means max_seq_len in BERT model, which is the length of sample after preprocessing.
the config file and model file for server side are saved in the folder bert_seq128_model.
the config file generated for client side is saved in the folder bert_seq128_client.
method 2:
You can also download the above model from BOS(max_seq_len=128). After decompression, the config file and model file for server side are stored in the bert_chinese_L-12_H-768_A-12_model folder, and the config file generated for client side is stored in the bert_chinese_L-12_H-768_A-12_client folder:
```shell
wget https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SemanticModel/bert_chinese_L-12_H-768_A-12.tar.gz
tar -xzf bert_chinese_L-12_H-768_A-12.tar.gz
mv bert_chinese_L-12_H-768_A-12_model bert_seq128_model
mv bert_chinese_L-12_H-768_A-12_client bert_seq128_client
```
if your model is bert_chinese_L-12_H-768_A-12_model, replace the 'bert_seq128_model' field in the following command with 'bert_chinese_L-12_H-768_A-12_model',replace 'bert_seq128_client' with 'bert_chinese_L-12_H-768_A-12_client'.
### Getting Dict and Sample Dataset
```
sh get_data.sh
```
this script will download Chinese Dictionary File vocab.txt and Chinese Sample Data data-c.txt
### Inference Service(Support BRPC-Client、GRPC-Client、Http-Client)
start cpu inference service,Run
```
python3 -m paddle_serving_server.serve --model bert_seq128_model/ --port 9292 #cpu inference service
```
Or,start gpu inference service,Run
```
python3 -m paddle_serving_server.serve --model bert_seq128_model/ --port 9292 --gpu_ids 0 #launch gpu inference service at GPU 0
```
### BRPC-Client Inference
before prediction we should install paddle_serving_app. This module provides data preprocessing for BERT model.
```
pip3 install paddle_serving_app
```
Run
```
head data-c.txt | python3 bert_client.py --model bert_seq128_client/serving_client_conf.prototxt
```
the client reads data from data-c.txt and send prediction request, the prediction is given by word vector. (Due to massive data in the word vector, we do not print it).
#### GRPC-Client/HTTP-Client
Run
```
head data-c.txt | python3 bert_httpclient.py --model bert_seq128_client/serving_client_conf.prototxt
```
## Benchmark
``` shell
bash benchmark.sh bert_seq128_model bert_seq128_client
```
The output log file of benchmark named `profile_log_bert_seq128_model`
## 语义理解预测服务
(简体中文|[English](./README.md))
示例中采用BERT模型进行语义理解预测,将文本表示为向量的形式,可以用来做进一步的分析和预测。
若使用python的版本为3.X, 将以下命令中的pip 替换为pip3, python替换为python3.
### 获取模型
方法1:
示例中采用[Paddlehub](https://github.com/PaddlePaddle/PaddleHub)中的[BERT中文模型](https://www.paddlepaddle.org.cn/hubdetail?name=bert_chinese_L-12_H-768_A-12&en_category=SemanticModel)
请先安装paddlehub
```
pip3 install paddlehub
```
执行
```
python3 prepare_model.py 128
```
参数128表示BERT模型中的max_seq_len,即预处理后的样本长度。
生成server端配置文件与模型文件,存放在bert_seq128_model文件夹。
生成client端配置文件,存放在bert_seq128_client文件夹。
方法2:
您也可以从bos上直接下载上述模型(max_seq_len=128),解压后server端配置文件与模型文件存放在bert_chinese_L-12_H-768_A-12_model文件夹,client端配置文件存放在bert_chinese_L-12_H-768_A-12_client文件夹:
```shell
wget https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SemanticModel/bert_chinese_L-12_H-768_A-12.tar.gz
tar -xzf bert_chinese_L-12_H-768_A-12.tar.gz
mv bert_chinese_L-12_H-768_A-12_model bert_seq128_model
mv bert_chinese_L-12_H-768_A-12_client bert_seq128_client
```
若使用bert_chinese_L-12_H-768_A-12_model模型,将下面命令中的bert_seq128_model字段替换为bert_chinese_L-12_H-768_A-12_model,bert_seq128_client字段替换为bert_chinese_L-12_H-768_A-12_client.
### 获取词典和样例数据
```
sh get_data.sh
```
脚本将下载中文词典vocab.txt和中文样例数据data-c.txt
### 启动预测服务(支持BRPC-Client、GRPC-Client、HTTP-Client三种方式访问)
启动cpu预测服务,执行
```
python3 -m paddle_serving_server.serve --model bert_seq128_model/ --port 9292 #启动cpu预测服务
```
或者,启动gpu预测服务,执行
```
python3 -m paddle_serving_server.serve --model bert_seq128_model/ --port 9292 --gpu_ids 0 #在gpu 0上启动gpu预测服务
```
### 执行预测
执行预测前需要安装paddle_serving_app,模块中提供了BERT模型的数据预处理方法。
```
pip3 install paddle_serving_app
```
#### BRPC-Client
执行
```
head data-c.txt | python3 bert_client.py --model bert_seq128_client/serving_client_conf.prototxt
```
启动client读取data-c.txt中的数据进行预测,预测结果为文本的向量表示(由于数据较多,脚本中没有将输出进行打印),server端的地址在脚本中修改。
#### GRPC-Client/HTTP-Client
执行
```
head data-c.txt | python3 bert_httpclient.py --model bert_seq128_client/serving_client_conf.prototxt
```
## 性能测试
``` shell
bash benchmark.sh bert_seq128_model bert_seq128_client
```
性能测试的日志文件为profile_log_bert_seq128_model
如需修改性能测试用例的参数,请修改benchmark.sh中的配置信息。
注意:bert_seq128_model和bert_seq128_client路径后不要加'/'符号,示例需要在GPU机器上运行。
#coding:utf-8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Mask, padding and batching."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
def prepare_batch_data(insts,
total_token_num,
max_seq_len=128,
pad_id=None,
cls_id=None,
sep_id=None,
mask_id=None,
return_input_mask=True,
return_max_len=True,
return_num_token=False):
"""
1. generate Tensor of data
2. generate Tensor of position
3. generate self attention mask, [shape: batch_size * max_len * max_len]
"""
batch_src_ids = [inst[0] for inst in insts]
batch_sent_ids = [inst[1] for inst in insts]
batch_pos_ids = [inst[2] for inst in insts]
labels_list = []
# compatible with squad, whose example includes start/end positions,
# or unique id
for i in range(3, len(insts[0]), 1):
labels = [inst[i] for inst in insts]
labels = np.array(labels).astype("int64").reshape([-1, 1])
labels_list.append(labels)
out = batch_src_ids
# Second step: padding
src_id, self_input_mask = pad_batch_data(
out, pad_idx=pad_id, max_seq_len=max_seq_len, return_input_mask=True)
pos_id = pad_batch_data(
batch_pos_ids,
pad_idx=pad_id,
max_seq_len=max_seq_len,
return_pos=False,
return_input_mask=False)
sent_id = pad_batch_data(
batch_sent_ids,
pad_idx=pad_id,
max_seq_len=max_seq_len,
return_pos=False,
return_input_mask=False)
return_list = [src_id, pos_id, sent_id, self_input_mask] + labels_list
return return_list if len(return_list) > 1 else return_list[0]
def pad_batch_data(insts,
pad_idx=0,
max_seq_len=128,
return_pos=False,
return_input_mask=False,
return_max_len=False,
return_num_token=False,
return_seq_lens=False):
"""
Pad the instances to the max sequence length in batch, and generate the
corresponding position data and input mask.
"""
return_list = []
#max_len = max(len(inst) for inst in insts)
max_len = max_seq_len
# Any token included in dict can be used to pad, since the paddings' loss
# will be masked out by weights and make no effect on parameter gradients.
inst_data = np.array([
list(inst) + list([pad_idx] * (max_len - len(inst))) for inst in insts
])
return_list += [inst_data.astype("int64").reshape([-1, max_len, 1])]
# position data
if return_pos:
inst_pos = np.array([
list(range(0, len(inst))) + [pad_idx] * (max_len - len(inst))
for inst in insts
])
return_list += [inst_pos.astype("int64").reshape([-1, max_len, 1])]
if return_input_mask:
# This is used to avoid attention on paddings.
input_mask_data = np.array(
[[1] * len(inst) + [0] * (max_len - len(inst)) for inst in insts])
input_mask_data = np.expand_dims(input_mask_data, axis=-1)
return_list += [input_mask_data.astype("float32")]
if return_max_len:
return_list += [max_len]
if return_num_token:
num_token = 0
for inst in insts:
num_token += len(inst)
return_list += [num_token]
if return_seq_lens:
seq_lens = np.array([len(inst) for inst in insts])
return_list += [seq_lens.astype("int64").reshape([-1, 1])]
return return_list if len(return_list) > 1 else return_list[0]
# -*- coding: utf-8 -*-
#
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from __future__ import unicode_literals, absolute_import
import os
import sys
import time
import json
import requests
import numpy as np
from paddle_serving_client import Client
from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args, show_latency
from paddle_serving_app.reader import ChineseBertReader
args = benchmark_args()
def single_func(idx, resource):
fin = open("data-c.txt")
dataset = []
for line in fin:
dataset.append(line.strip())
profile_flags = False
latency_flags = False
if os.getenv("FLAGS_profile_client"):
profile_flags = True
if os.getenv("FLAGS_serving_latency"):
latency_flags = True
latency_list = []
if args.request == "rpc":
reader = ChineseBertReader({"max_seq_len": 128})
fetch = ["pooled_output"]
client = Client()
client.load_client_config(args.model)
client.connect([resource["endpoint"][idx % len(resource["endpoint"])]])
start = time.time()
for i in range(turns):
if args.batch_size >= 1:
l_start = time.time()
feed_batch = []
b_start = time.time()
for bi in range(args.batch_size):
feed_dict = reader.process(dataset[bi])
for key in feed_dict.keys():
feed_dict[key] = np.array(feed_dict[key]).reshape(
(1, 128, 1))
feed_batch.append(feed_dict)
b_end = time.time()
if profile_flags:
sys.stderr.write(
"PROFILE\tpid:{}\tbert_pre_0:{} bert_pre_1:{}\n".format(
os.getpid(),
int(round(b_start * 1000000)),
int(round(b_end * 1000000))))
result = client.predict(
feed=feed_batch, fetch=fetch, batch=True)
l_end = time.time()
if latency_flags:
latency_list.append(l_end * 1000 - l_start * 1000)
else:
print("unsupport batch size {}".format(args.batch_size))
elif args.request == "http":
reader = ChineseBertReader({"max_seq_len": 128})
fetch = ["pooled_output"]
server = "http://" + resource["endpoint"][idx % len(resource[
"endpoint"])] + "/bert/prediction"
start = time.time()
for i in range(turns):
if args.batch_size >= 1:
l_start = time.time()
feed_batch = []
b_start = time.time()
for bi in range(args.batch_size):
feed_batch.append({"words": dataset[bi]})
req = json.dumps({"feed": feed_batch, "fetch": fetch})
b_end = time.time()
if profile_flags:
sys.stderr.write(
"PROFILE\tpid:{}\tbert_pre_0:{} bert_pre_1:{}\n".format(
os.getpid(),
int(round(b_start * 1000000)),
int(round(b_end * 1000000))))
result = requests.post(
server,
data=req,
headers={"Content-Type": "application/json"})
l_end = time.time()
if latency_flags:
latency_list.append(l_end * 1000 - l_start * 1000)
else:
print("unsupport batch size {}".format(args.batch_size))
else:
raise ValueError("not implemented {} request".format(args.request))
end = time.time()
if latency_flags:
return [[end - start], latency_list]
else:
return [[end - start]]
if __name__ == '__main__':
multi_thread_runner = MultiThreadRunner()
endpoint_list = ["127.0.0.1:9292", "127.0.0.1:9293"]
turns = 100
start = time.time()
result = multi_thread_runner.run(
single_func, args.thread, {"endpoint": endpoint_list,
"turns": turns})
end = time.time()
total_cost = end - start
avg_cost = 0
for i in range(args.thread):
avg_cost += result[0][i]
avg_cost = avg_cost / args.thread
print("total cost: {}s".format(total_cost))
print("each thread cost: {}s. ".format(avg_cost))
print("qps: {}samples/s".format(args.batch_size * args.thread * turns /
total_cost))
if os.getenv("FLAGS_serving_latency"):
show_latency(result[1])
rm profile_log*
export CUDA_VISIBLE_DEVICES=0,1
export FLAGS_profile_server=1
export FLAGS_profile_client=1
export FLAGS_serving_latency=1
gpu_id=0
#save cpu and gpu utilization log
if [ -d utilization ];then
rm -rf utilization
else
mkdir utilization
fi
#start server
$PYTHONROOT/bin/python3 -m paddle_serving_server.serve --model $1 --port 9292 --thread 4 --gpu_ids 0,1 --mem_optim --ir_optim > elog 2>&1 &
sleep 5
#warm up
$PYTHONROOT/bin/python3 benchmark.py --thread 4 --batch_size 1 --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1
echo -e "import psutil\nimport time\nwhile True:\n\tcpu_res = psutil.cpu_percent()\n\twith open('cpu.txt', 'a+') as f:\n\t\tf.write(f'{cpu_res}\\\n')\n\ttime.sleep(0.1)" > cpu.py
for thread_num in 1 4 8 16
do
for batch_size in 1 4 16 64
do
job_bt=`date '+%Y%m%d%H%M%S'`
nvidia-smi --id=0 --query-compute-apps=used_memory --format=csv -lms 100 > gpu_memory_use.log 2>&1 &
nvidia-smi --id=0 --query-gpu=utilization.gpu --format=csv -lms 100 > gpu_utilization.log 2>&1 &
rm -rf cpu.txt
$PYTHONROOT/bin/python3 cpu.py &
gpu_memory_pid=$!
$PYTHONROOT/bin/python3 benchmark.py --thread $thread_num --batch_size $batch_size --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1
kill `ps -ef|grep used_memory|awk '{print $2}'` > /dev/null
kill `ps -ef|grep utilization.gpu|awk '{print $2}'` > /dev/null
kill `ps -ef|grep cpu.py|awk '{print $2}'` > /dev/null
echo "model_name:" $1
echo "thread_num:" $thread_num
echo "batch_size:" $batch_size
echo "=================Done===================="
echo "model_name:$1" >> profile_log_$1
echo "batch_size:$batch_size" >> profile_log_$1
job_et=`date '+%Y%m%d%H%M%S'`
awk 'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "CPU_UTILIZATION:", max}' cpu.txt >> profile_log_$1
awk 'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "MAX_GPU_MEMORY:", max}' gpu_memory_use.log >> profile_log_$1
awk 'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "GPU_UTILIZATION:", max}' gpu_utilization.log >> profile_log_$1
rm -rf gpu_use.log gpu_utilization.log
$PYTHONROOT/bin/python3 ../util/show_profile.py profile $thread_num >> profile_log_$1
tail -n 8 profile >> profile_log_$1
echo "" >> profile_log_$1
done
done
#Divided log
awk 'BEGIN{RS="\n\n"}{i++}{print > "bert_log_"i}' profile_log_$1
mkdir bert_log && mv bert_log_* bert_log
ps -ef|grep 'serving'|grep -v grep|cut -c 9-15 | xargs kill -9
export CUDA_VISIBLE_DEVICES=0,1
python -m paddle_serving_server.serve --model bert_seq20_model/ --port 9295 --thread 4 --gpu_ids 0,1 2> elog > stdlog &
export FLAGS_profile_client=1
export FLAGS_profile_server=1
sleep 5
thread_num=4
python benchmark_batch.py --thread ${thread_num} --batch_size 64 --model serving_client_conf/serving_client_conf.prototxt 2> profile
python show_profile.py profile ${thread_num}
python timeline_trace.py profile trace
# coding:utf-8
# pylint: disable=doc-string-missing
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from paddle_serving_client import Client
from paddle_serving_client.utils import benchmark_args
from paddle_serving_app.reader import ChineseBertReader
import numpy as np
args = benchmark_args()
reader = ChineseBertReader({"max_seq_len": 128})
fetch = ["pooled_output"]
endpoint_list = ['127.0.0.1:9292']
client = Client()
client.load_client_config(args.model)
client.connect(endpoint_list)
for line in sys.stdin:
feed_dict = reader.process(line)
for key in feed_dict.keys():
feed_dict[key] = np.array(feed_dict[key]).reshape((128, 1))
#print(feed_dict)
result = client.predict(feed=feed_dict, fetch=fetch, batch=False)
print(result)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
from paddle_serving_server import OpMaker
from paddle_serving_server import OpSeqMaker
from paddle_serving_server import Server
op_maker = OpMaker()
read_op = op_maker.create('general_reader')
general_infer_op = op_maker.create('general_infer')
general_response_op = op_maker.create('general_response')
op_seq_maker = OpSeqMaker()
op_seq_maker.add_op(read_op)
op_seq_maker.add_op(general_infer_op)
op_seq_maker.add_op(general_response_op)
server = Server()
server.set_op_sequence(op_seq_maker.get_op_sequence())
server.set_num_threads(8)
server.set_memory_optimize(True)
server.set_gpuid(1)
server.load_model_config(sys.argv[1])
port = int(sys.argv[2])
gpuid = sys.argv[3]
server.set_gpuid(gpuid)
server.prepare_server(workdir="work_dir1", port=port, device="gpu")
server.run_server()
# coding:utf-8
# pylint: disable=doc-string-missing
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from paddle_serving_client import HttpClient
from paddle_serving_client.utils import benchmark_args
from paddle_serving_app.reader import ChineseBertReader
import numpy as np
args = benchmark_args()
reader = ChineseBertReader({"max_seq_len": 128})
fetch = ["pooled_output"]
endpoint_list = ['127.0.0.1:9292']
client = HttpClient()
client.load_client_config(args.model)
'''
if you want use GRPC-client, set_use_grpc_client(True)
or you can directly use client.grpc_client_predict(...)
as for HTTP-client,set_use_grpc_client(False)(which is default)
or you can directly use client.http_client_predict(...)
'''
#client.set_use_grpc_client(True)
'''
if you want to enable Encrypt Module,uncommenting the following line
'''
#client.use_key("./key")
'''
if you want to compress,uncommenting the following line
'''
#client.set_response_compress(True)
#client.set_request_compress(True)
'''
we recommend use Proto data format in HTTP-body, set True(which is default)
if you want use JSON data format in HTTP-body, set False
'''
#client.set_http_proto(True)
client.connect(endpoint_list)
for line in sys.stdin:
feed_dict = reader.process(line)
for key in feed_dict.keys():
feed_dict[key] = np.array(feed_dict[key]).reshape((128, 1))
#print(feed_dict)
result = client.predict(feed=feed_dict, fetch=fetch, batch=False)
print(result)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from batching import pad_batch_data
import tokenization
class BertReader():
def __init__(self, vocab_file="", max_seq_len=128):
self.vocab_file = vocab_file
self.tokenizer = tokenization.FullTokenizer(vocab_file=vocab_file)
self.max_seq_len = max_seq_len
self.vocab = self.tokenizer.vocab
self.pad_id = self.vocab["[PAD]"]
self.cls_id = self.vocab["[CLS]"]
self.sep_id = self.vocab["[SEP]"]
self.mask_id = self.vocab["[MASK]"]
def pad_batch(self, token_ids, text_type_ids, position_ids):
batch_token_ids = [token_ids]
batch_text_type_ids = [text_type_ids]
batch_position_ids = [position_ids]
padded_token_ids, input_mask = pad_batch_data(
batch_token_ids,
max_seq_len=self.max_seq_len,
pad_idx=self.pad_id,
return_input_mask=True)
padded_text_type_ids = pad_batch_data(
batch_text_type_ids,
max_seq_len=self.max_seq_len,
pad_idx=self.pad_id)
padded_position_ids = pad_batch_data(
batch_position_ids,
max_seq_len=self.max_seq_len,
pad_idx=self.pad_id)
return padded_token_ids, padded_position_ids, padded_text_type_ids, input_mask
def process(self, sent):
text_a = tokenization.convert_to_unicode(sent)
tokens_a = self.tokenizer.tokenize(text_a)
if len(tokens_a) > self.max_seq_len - 2:
tokens_a = tokens_a[0:(self.max_seq_len - 2)]
tokens = []
text_type_ids = []
tokens.append("[CLS]")
text_type_ids.append(0)
for token in tokens_a:
tokens.append(token)
text_type_ids.append(0)
token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
position_ids = list(range(len(token_ids)))
p_token_ids, p_pos_ids, p_text_type_ids, input_mask = \
self.pad_batch(token_ids, text_type_ids, position_ids)
feed_result = {
"input_ids": p_token_ids.reshape(-1).tolist(),
"position_ids": p_pos_ids.reshape(-1).tolist(),
"segment_ids": p_text_type_ids.reshape(-1).tolist(),
"input_mask": input_mask.reshape(-1).tolist()
}
return feed_result
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
from paddle_serving_server import OpMaker
from paddle_serving_server import OpSeqMaker
from paddle_serving_server import Server
op_maker = OpMaker()
read_op = op_maker.create('general_reader')
general_infer_op = op_maker.create('general_infer')
general_response_op = op_maker.create('general_response')
op_seq_maker = OpSeqMaker()
op_seq_maker.add_op(read_op)
op_seq_maker.add_op(general_infer_op)
op_seq_maker.add_op(general_response_op)
server = Server()
server.set_op_sequence(op_seq_maker.get_op_sequence())
server.set_num_threads(4)
server.load_model_config(sys.argv[1])
port = int(sys.argv[2])
server.prepare_server(workdir="work_dir1", port=port, device="cpu")
server.run_server()
wget https://paddle-serving.bj.bcebos.com/bert_example/data-c.txt --no-check-certificate
wget https://paddle-serving.bj.bcebos.com/bert_example/vocab.txt --no-check-certificate
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import paddlehub as hub
import paddle.fluid as fluid
import sys
import paddle_serving_client.io as serving_io
import paddle
paddle.enable_static()
model_name = "bert_chinese_L-12_H-768_A-12"
module = hub.Module(name=model_name)
inputs, outputs, program = module.context(
trainable=True, max_seq_len=int(sys.argv[1]))
place = fluid.core_avx.CPUPlace()
exe = fluid.Executor(place)
input_ids = inputs["input_ids"]
position_ids = inputs["position_ids"]
segment_ids = inputs["segment_ids"]
input_mask = inputs["input_mask"]
pooled_output = outputs["pooled_output"]
sequence_output = outputs["sequence_output"]
feed_var_names = [
input_ids.name, position_ids.name, segment_ids.name, input_mask.name
]
target_vars = [pooled_output, sequence_output]
serving_io.save_model(
"bert_seq{}_model".format(sys.argv[1]),
"bert_seq{}_client".format(sys.argv[1]), {
"input_ids": input_ids,
"position_ids": position_ids,
"segment_ids": segment_ids,
"input_mask": input_mask,
}, {"pooled_output": pooled_output,
"sequence_output": sequence_output}, program)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_client import Client
from paddle_serving_app.reader import ChineseBertReader
import sys
import numpy as np
client = Client()
client.load_client_config("./bert_seq32_client/serving_client_conf.prototxt")
client.connect(["127.0.0.1:9292"])
reader = ChineseBertReader({"max_seq_len": 32})
fetch = ["sequence_10", "sequence_12", "pooled_output"]
expected_shape = {
"sequence_10": (4, 32, 768),
"sequence_12": (4, 32, 768),
"pooled_output": (4, 768)
}
batch_size = 4
feed_batch = {}
batch_len = 0
for line in sys.stdin:
feed = reader.process(line)
if batch_len == 0:
for key in feed.keys():
val_len = len(feed[key])
feed_batch[key] = np.array(feed[key]).reshape((1, val_len, 1))
continue
if len(feed_batch) < batch_size:
for key in feed.keys():
np.concatenate([
feed_batch[key], np.array(feed[key]).reshape((1, val_len, 1))
])
else:
fetch_map = client.predict(feed=feed_batch, fetch=fetch)
feed_batch = []
for var_name in fetch:
if fetch_map[var_name].shape != expected_shape[var_name]:
print("fetch var {} shape error.".format(var_name))
sys.exit(1)
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import io
import unicodedata
import six
import sentencepiece as spm
import pickle
def convert_to_unicode(text): # pylint: disable=doc-string-with-all-args
"""Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
if six.PY3:
if isinstance(text, str):
return text
elif isinstance(text, bytes):
return text.decode("utf-8", "ignore")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
elif six.PY2:
if isinstance(text, str):
return text.decode("utf-8", "ignore")
elif isinstance(text, unicode): # noqa
return text
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
else:
raise ValueError("Not running on Python2 or Python 3?")
def printable_text(text): # pylint: disable=doc-string-with-all-args
"""Returns text encoded in a way suitable for print or `tf.logging`."""
# These functions want `str` for both Python2 and Python3, but in one case
# it's a Unicode string and in the other it's a byte string.
if six.PY3:
if isinstance(text, str):
return text
elif isinstance(text, bytes):
return text.decode("utf-8", "ignore")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
elif six.PY2:
if isinstance(text, str):
return text
elif isinstance(text, unicode): # noqa
return text.encode("utf-8")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
else:
raise ValueError("Not running on Python2 or Python 3?")
def load_vocab(vocab_file): # pylint: disable=doc-string-with-all-args, doc-string-with-returns
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
fin = io.open(vocab_file, "r", encoding="UTF-8")
for num, line in enumerate(fin):
items = convert_to_unicode(line.strip()).split("\t")
if len(items) > 2:
break
token = items[0]
index = items[1] if len(items) == 2 else num
token = token.strip()
vocab[token] = int(index)
fin.close()
return vocab
def convert_by_vocab(vocab, items):
"""Converts a sequence of [tokens|ids] using the vocab."""
output = []
for item in items:
output.append(vocab[item])
return output
def convert_tokens_to_ids(vocab, tokens):
return convert_by_vocab(vocab, tokens)
def convert_ids_to_tokens(inv_vocab, ids):
return convert_by_vocab(inv_vocab, ids)
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a peice of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
class FullTokenizer(object):
"""Runs end-to-end tokenziation."""
def __init__(self,
vocab_file,
do_lower_case=True,
use_sentence_piece_vocab=False):
self.vocab = load_vocab(vocab_file)
self.inv_vocab = {v: k for k, v in self.vocab.items()}
self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
self.use_sentence_piece_vocab = use_sentence_piece_vocab
self.wordpiece_tokenizer = WordpieceTokenizer(
vocab=self.vocab,
use_sentence_piece_vocab=self.use_sentence_piece_vocab)
def tokenize(self, text):
split_tokens = []
for token in self.basic_tokenizer.tokenize(text):
for sub_token in self.wordpiece_tokenizer.tokenize(token):
split_tokens.append(sub_token)
return split_tokens
def convert_tokens_to_ids(self, tokens):
return convert_by_vocab(self.vocab, tokens)
def convert_ids_to_tokens(self, ids):
return convert_by_vocab(self.inv_vocab, ids)
class CharTokenizer(object):
"""Runs end-to-end tokenziation."""
def __init__(self, vocab_file, do_lower_case=True):
self.vocab = load_vocab(vocab_file)
self.inv_vocab = {v: k for k, v in self.vocab.items()}
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
def tokenize(self, text):
split_tokens = []
for token in text.lower().split(" "):
for sub_token in self.wordpiece_tokenizer.tokenize(token):
split_tokens.append(sub_token)
return split_tokens
def convert_tokens_to_ids(self, tokens):
return convert_by_vocab(self.vocab, tokens)
def convert_ids_to_tokens(self, ids):
return convert_by_vocab(self.inv_vocab, ids)
class WSSPTokenizer(object): # pylint: disable=doc-string-missing
def __init__(self, vocab_file, sp_model_dir, word_dict, ws=True,
lower=True):
self.vocab = load_vocab(vocab_file)
self.inv_vocab = {v: k for k, v in self.vocab.items()}
self.ws = ws
self.lower = lower
self.dict = pickle.load(open(word_dict, 'rb'))
self.sp_model = spm.SentencePieceProcessor()
self.window_size = 5
self.sp_model.Load(sp_model_dir)
def cut(self, chars): # pylint: disable=doc-string-missing
words = []
idx = 0
while idx < len(chars):
matched = False
for i in range(self.window_size, 0, -1):
cand = chars[idx:idx + i]
if cand in self.dict:
words.append(cand)
matched = True
break
if not matched:
i = 1
words.append(chars[idx])
idx += i
return words
def tokenize(self, text, unk_token="[UNK]"): # pylint: disable=doc-string-missing
text = convert_to_unicode(text)
if self.ws:
text = [s for s in self.cut(text) if s != ' ']
else:
text = text.split(' ')
if self.lower:
text = [s.lower() for s in text]
text = ' '.join(text)
tokens = self.sp_model.EncodeAsPieces(text)
in_vocab_tokens = []
for token in tokens:
if token in self.vocab:
in_vocab_tokens.append(token)
else:
in_vocab_tokens.append(unk_token)
return in_vocab_tokens
def convert_tokens_to_ids(self, tokens):
return convert_by_vocab(self.vocab, tokens)
def convert_ids_to_tokens(self, ids):
return convert_by_vocab(self.inv_vocab, ids)
class BasicTokenizer(object):
"""Runs basic tokenization (punctuation splitting, lower casing, etc.)."""
def __init__(self, do_lower_case=True):
"""Constructs a BasicTokenizer.
Args:
do_lower_case: Whether to lower case the input.
"""
self.do_lower_case = do_lower_case
def tokenize(self, text): # pylint: disable=doc-string-with-all-args, doc-string-with-returns
"""Tokenizes a piece of text."""
text = convert_to_unicode(text)
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
text = self._tokenize_chinese_chars(text)
orig_tokens = whitespace_tokenize(text)
split_tokens = []
for token in orig_tokens:
if self.do_lower_case:
token = token.lower()
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text):
"""Splits punctuation on a piece of text."""
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if ((cp >= 0x4E00 and cp <= 0x9FFF) or #
(cp >= 0x3400 and cp <= 0x4DBF) or #
(cp >= 0x20000 and cp <= 0x2A6DF) or #
(cp >= 0x2A700 and cp <= 0x2B73F) or #
(cp >= 0x2B740 and cp <= 0x2B81F) or #
(cp >= 0x2B820 and cp <= 0x2CEAF) or
(cp >= 0xF900 and cp <= 0xFAFF) or #
(cp >= 0x2F800 and cp <= 0x2FA1F)): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xfffd or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
class WordpieceTokenizer(object):
"""Runs WordPiece tokenziation."""
def __init__(self,
vocab,
unk_token="[UNK]",
max_input_chars_per_word=100,
use_sentence_piece_vocab=False):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
self.use_sentence_piece_vocab = use_sentence_piece_vocab
def tokenize(self, text): # pylint: disable=doc-string-with-all-args
"""Tokenizes a piece of text into its word pieces.
This uses a greedy longest-match-first algorithm to perform tokenization
using the given vocabulary.
For example:
input = "unaffable"
output = ["un", "##aff", "##able"]
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through `BasicTokenizer.
Returns:
A list of wordpiece tokens.
"""
text = convert_to_unicode(text)
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start == 0 and self.use_sentence_piece_vocab:
substr = u'\u2581' + substr
if start > 0 and not self.use_sentence_piece_vocab:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
def _is_whitespace(char):
"""Checks whether `chars` is a whitespace character."""
# \t, \n, and \r are technically contorl characters but we treat them
# as whitespace since they are generally considered as such.
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
cat = unicodedata.category(char)
if cat == "Zs":
return True
return False
def _is_control(char):
"""Checks whether `chars` is a control character."""
# These are technically control characters but we count them as whitespace
# characters.
if char == "\t" or char == "\n" or char == "\r":
return False
cat = unicodedata.category(char)
if cat.startswith("C"):
return True
return False
def _is_punctuation(char):
"""Checks whether `chars` is a punctuation character."""
cp = ord(char)
# We treat all non-letter/number ASCII as punctuation.
# Characters such as "^", "$", and "`" are not in the Unicode
# Punctuation class but we treat them as punctuation anyways, for
# consistency.
if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
(cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
return True
cat = unicodedata.category(char)
if cat.startswith("P"):
return True
return False
## Chinese Word Segmentation
([简体中文](./README_CN.md)|English)
### Get Model
```
python3 -m paddle_serving_app.package --get_model lac
tar -xzvf lac.tar.gz
```
#### Start inference service(Support BRPC-Client/GRPC-Client/Http-Client)
```
python3 -m paddle_serving_server.serve --model lac_model/ --port 9292
```
### BRPC Infer
```
echo "我爱北京天安门" | python3 lac_client.py lac_client/serving_client_conf.prototxt
```
It will get the segmentation result.
### GRPC/Http Infer
```
echo "我爱北京天安门" | python3 lac_http_client.py lac_client/serving_client_conf.prototxt
```
## 中文分词模型
(简体中文|[English](./README.md))
### 获取模型
```
python3 -m paddle_serving_app.package --get_model lac
tar -xzvf lac.tar.gz
```
#### 开启预测服务(支持BRPC-Client/GRPC-Client/Http-Client)
```
python3 -m paddle_serving_server.serve --model lac_model/ --port 9292
```
### 执行BRPC预测
```
echo "我爱北京天安门" | python3 lac_client.py lac_client/serving_client_conf.prototxt
```
我们就能得到分词结果
### 执行GRPC/Http预测
```
echo "我爱北京天安门" | python3 lac_http_client.py lac_client/serving_client_conf.prototxt
```
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import sys
import time
import requests
from paddle_serving_app.reader import LACReader
from paddle_serving_client import Client
from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args
args = benchmark_args()
def single_func(idx, resource):
reader = LACReader()
start = time.time()
if args.request == "rpc":
client = Client()
client.load_client_config(args.model)
client.connect([args.endpoint])
fin = open("jieba_test.txt")
for line in fin:
feed_data = reader.process(line)
fetch_map = client.predict(
feed={"words": feed_data}, fetch=["crf_decode"])
elif args.request == "http":
fin = open("jieba_test.txt")
for line in fin:
req_data = {"words": line.strip(), "fetch": ["crf_decode"]}
r = requests.post(
"http://{}/lac/prediction".format(args.endpoint),
data={"words": line.strip(),
"fetch": ["crf_decode"]})
end = time.time()
return [[end - start]]
multi_thread_runner = MultiThreadRunner()
result = multi_thread_runner.run(single_func, args.thread, {})
print(result)
# encoding=utf-8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_client import Client
from paddle_serving_app.reader import LACReader
import sys
import os
import io
import numpy as np
client = Client()
client.load_client_config(sys.argv[1])
client.connect(["127.0.0.1:9292"])
reader = LACReader()
for line in sys.stdin:
if len(line) <= 0:
continue
feed_data = reader.process(line)
if len(feed_data) <= 0:
continue
print(feed_data)
#fetch_map = client.predict(feed={"words": np.array(feed_data).reshape(len(feed_data), 1), "words.lod": [0, len(feed_data)]}, fetch=["crf_decode"], batch=True)
fetch_map = client.predict(
feed={
"words": np.array(feed_data + feed_data).reshape(
len(feed_data) * 2, 1),
"words.lod": [0, len(feed_data), 2 * len(feed_data)]
},
fetch=["crf_decode"],
batch=True)
print(fetch_map)
begin = fetch_map['crf_decode.lod'][0]
end = fetch_map['crf_decode.lod'][1]
segs = reader.parse_result(line, fetch_map["crf_decode"][begin:end])
print("word_seg: " + "|".join(str(words) for words in segs))
# encoding=utf-8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_client import HttpClient
from paddle_serving_app.reader import LACReader
import sys
import os
import io
import numpy as np
client = HttpClient()
client.load_client_config(sys.argv[1])
'''
if you want use GRPC-client, set_use_grpc_client(True)
or you can directly use client.grpc_client_predict(...)
as for HTTP-client,set_use_grpc_client(False)(which is default)
or you can directly use client.http_client_predict(...)
'''
#client.set_use_grpc_client(True)
'''
if you want to enable Encrypt Module,uncommenting the following line
'''
#client.use_key("./key")
'''
if you want to compress,uncommenting the following line
'''
#client.set_response_compress(True)
#client.set_request_compress(True)
'''
we recommend use Proto data format in HTTP-body, set True(which is default)
if you want use JSON data format in HTTP-body, set False
'''
#client.set_http_proto(True)
client.connect(["127.0.0.1:9292"])
reader = LACReader()
for line in sys.stdin:
if len(line) <= 0:
continue
feed_data = reader.process(line)
if len(feed_data) <= 0:
continue
print(feed_data)
#fetch_map = client.predict(feed={"words": np.array(feed_data).reshape(len(feed_data), 1), "words.lod": [0, len(feed_data)]}, fetch=["crf_decode"], batch=True)
fetch_map = client.predict(
feed={
"words": np.array(feed_data + feed_data).reshape(
len(feed_data) * 2, 1),
"words.lod": [0, len(feed_data), 2 * len(feed_data)]
},
fetch=["crf_decode"],
batch=True)
print(fetch_map)
此差异已折叠。
此差异已折叠。
# Chinese Sentence Sentiment Classification
([简体中文](./README_CN.md)|English)
## Get Model
```
python3 -m paddle_serving_app.package --get_model senta_bilstm
python3 -m paddle_serving_app.package --get_model lac
tar -xzvf senta_bilstm.tar.gz
tar -xzvf lac.tar.gz
```
## Start HTTP Service
```
python3 -m paddle_serving_server.serve --model lac_model --port 9300
python3 senta_web_service.py
```
In the Chinese sentiment classification task, the Chinese word segmentation needs to be done through [LAC task] (../lac).
In this demo, the LAC task is placed in the preprocessing part of the HTTP prediction service of the sentiment classification task.
## Client prediction
```
curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"words": "天气不错"}], "fetch":["class_probs"]}' http://127.0.0.1:9393/senta/prediction
```
# 中文语句情感分类
(简体中文|[English](./README.md))
## 获取模型文件
```
python3 -m paddle_serving_app.package --get_model senta_bilstm
python3 -m paddle_serving_app.package --get_model lac
tar -xzvf lac.tar.gz
tar -xzvf senta_bilstm.tar.gz
```
## 启动HTTP服务
```
python3 -m paddle_serving_server.serve --model lac_model --port 9300
python3 senta_web_service.py
```
中文情感分类任务中需要先通过[LAC任务](../lac)进行中文分词。
示例中将LAC任务放在情感分类任务的HTTP预测服务的预处理部分。
## 客户端预测
```
curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"words": "天气不错"}], "fetch":["class_probs"]}' http://127.0.0.1:9393/senta/prediction
```
wget https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SentimentAnalysis/senta_bilstm.tar.gz --no-check-certificate
tar -xzvf senta_bilstm.tar.gz
wget https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/LexicalAnalysis/lac.tar.gz --no-check-certificate
tar -xzvf lac.tar.gz
wget https://paddle-serving.bj.bcebos.com/reader/lac/lac_dict.tar.gz --no-check-certificate
tar -xzvf lac_dict.tar.gz
wget https://paddle-serving.bj.bcebos.com/reader/senta/vocab.txt --no-check-certificate
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册