Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
9cb7c839
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9cb7c839
编写于
11月 14, 2021
作者:
J
Jiawei Wang
提交者:
GitHub
11月 14, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update paddle_io.py
上级
0d32c5f1
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
1 addition
and
296 deletion
+1
-296
python/paddle_serving_client/io/paddle_io.py
python/paddle_serving_client/io/paddle_io.py
+1
-296
未找到文件。
python/paddle_serving_client/io/paddle_io.py
浏览文件 @
9cb7c839
...
@@ -519,299 +519,4 @@ def save_inference_model(path_prefix, feed_vars, fetch_vars, executor,
...
@@ -519,299 +519,4 @@ def save_inference_model(path_prefix, feed_vars, fetch_vars, executor,
# serialize and save params
# serialize and save params
params_bytes
=
_serialize_persistables
(
program
,
executor
)
params_bytes
=
_serialize_persistables
(
program
,
executor
)
save_to_file
(
params_path
,
params_bytes
)
save_to_file
(
params_path
,
params_bytes
)
@
static_only
def
deserialize_program
(
data
):
"""
:api_attr: Static Graph
Deserialize given data to a program.
Args:
data(bytes): serialized program.
Returns:
Program: deserialized program.
Examples:
.. code-block:: python
import paddle
paddle.enable_static()
path_prefix = "./infer_model"
# User defined network, here a softmax regession example
image = paddle.static.data(name='img', shape=[None, 28, 28], dtype='float32')
label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
predict = paddle.static.nn.fc(image, 10, activation='softmax')
loss = paddle.nn.functional.cross_entropy(predict, label)
exe = paddle.static.Executor(paddle.CPUPlace())
exe.run(paddle.static.default_startup_program())
# serialize the default main program to bytes.
serialized_program = paddle.static.serialize_program([image], [predict])
# deserialize bytes to program
deserialized_program = paddle.static.deserialize_program(serialized_program)
"""
program
=
Program
.
parse_from_string
(
data
)
if
not
core
.
_is_program_version_supported
(
program
.
_version
()):
raise
ValueError
(
"Unsupported program version: %d
\n
"
%
program
.
_version
())
return
program
@
static_only
def
deserialize_persistables
(
program
,
data
,
executor
):
"""
:api_attr: Static Graph
Deserialize given data to parameters according to given program and executor.
Args:
program(Program): program that contains parameter names (to deserialize).
data(bytes): serialized parameters.
executor(Executor): executor used to run load op.
Returns:
Program: deserialized program.
Examples:
.. code-block:: python
import paddle
paddle.enable_static()
path_prefix = "./infer_model"
# User defined network, here a softmax regession example
image = paddle.static.data(name='img', shape=[None, 28, 28], dtype='float32')
label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
predict = paddle.static.nn.fc(image, 10, activation='softmax')
loss = paddle.nn.functional.cross_entropy(predict, label)
exe = paddle.static.Executor(paddle.CPUPlace())
exe.run(paddle.static.default_startup_program())
# serialize parameters to bytes.
serialized_params = paddle.static.serialize_persistables([image], [predict], exe)
# deserialize bytes to parameters.
main_program = paddle.static.default_main_program()
deserialized_params = paddle.static.deserialize_persistables(main_program, serialized_params, exe)
"""
if
not
isinstance
(
program
,
Program
):
raise
TypeError
(
"program type must be `fluid.Program`, but received `%s`"
%
type
(
program
))
# load params to a tmp program
load_program
=
Program
()
load_block
=
load_program
.
global_block
()
vars_
=
list
(
filter
(
is_persistable
,
program
.
list_vars
()))
origin_shape_map
=
{}
load_var_map
=
{}
check_vars
=
[]
sparse_vars
=
[]
for
var
in
vars_
:
assert
isinstance
(
var
,
Variable
)
if
var
.
type
==
core
.
VarDesc
.
VarType
.
RAW
:
continue
if
isinstance
(
var
,
Parameter
):
origin_shape_map
[
var
.
name
]
=
tuple
(
var
.
desc
.
get_shape
())
if
var
.
type
==
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
:
sparse_vars
.
append
(
var
)
continue
var_copy
=
_clone_var_in_block
(
load_block
,
var
)
check_vars
.
append
(
var
)
load_var_map
[
var_copy
.
name
]
=
var_copy
# append load_combine op to load parameters,
load_var_list
=
[]
for
name
in
sorted
(
load_var_map
.
keys
()):
load_var_list
.
append
(
load_var_map
[
name
])
load_block
.
append_op
(
type
=
'load_combine'
,
inputs
=
{},
outputs
=
{
"Out"
:
load_var_list
},
# if load from memory, file_path is data
attrs
=
{
'file_path'
:
data
,
'model_from_memory'
:
True
})
executor
.
run
(
load_program
)
# check var shape
for
var
in
check_vars
:
if
not
isinstance
(
var
,
Parameter
):
continue
var_tmp
=
paddle
.
fluid
.
global_scope
().
find_var
(
var
.
name
)
assert
var_tmp
!=
None
,
"can't not find var: "
+
var
.
name
new_shape
=
(
np
.
array
(
var_tmp
.
get_tensor
())).
shape
assert
var
.
name
in
origin_shape_map
,
var
.
name
+
" MUST in var list."
origin_shape
=
origin_shape_map
.
get
(
var
.
name
)
if
new_shape
!=
origin_shape
:
raise
RuntimeError
(
"Shape mismatch, program needs a parameter with shape ({}), "
"but the loaded parameter ('{}') has a shape of ({})."
.
format
(
origin_shape
,
var
.
name
,
new_shape
))
def
load_from_file
(
path
):
"""
Load file in binary mode.
Args:
path(str): Path of an existed file.
Returns:
bytes: Content of file.
"""
with
open
(
path
,
'rb'
)
as
f
:
data
=
f
.
read
()
return
data
@
static_only
def
load_inference_model
(
path_prefix
,
executor
,
**
kwargs
):
"""
:api_attr: Static Graph
Load inference model from a given path. By this API, you can get the model
structure(Inference Program) and model parameters.
Args:
path_prefix(str | None): One of the following:
- Directory path to save model + model name without suffix.
- Set to None when reading the model from memory.
executor(Executor): The executor to run for loading inference model.
See :ref:`api_guide_executor_en` for more details about it.
kwargs: Supported keys including 'model_filename', 'params_filename'.Attention please, kwargs is used for backward compatibility mainly.
- model_filename(str): specify model_filename if you don't want to use default name.
- params_filename(str): specify params_filename if you don't want to use default name.
Returns:
list: The return of this API is a list with three elements:
(program, feed_target_names, fetch_targets). The `program` is a
``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference.
The `feed_target_names` is a list of ``str``, which contains names of variables
that need to feed data in the inference program. The `fetch_targets` is a list of
``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which
we can get inference results.
Raises:
ValueError: If `path_prefix.pdmodel` or `path_prefix.pdiparams` doesn't exist.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.enable_static()
# Build the model
startup_prog = paddle.static.default_startup_program()
main_prog = paddle.static.default_main_program()
with paddle.static.program_guard(main_prog, startup_prog):
image = paddle.static.data(name="img", shape=[64, 784])
w = paddle.create_parameter(shape=[784, 200], dtype='float32')
b = paddle.create_parameter(shape=[200], dtype='float32')
hidden_w = paddle.matmul(x=image, y=w)
hidden_b = paddle.add(hidden_w, b)
exe = paddle.static.Executor(paddle.CPUPlace())
exe.run(startup_prog)
# Save the inference model
path_prefix = "./infer_model"
paddle.static.save_inference_model(path_prefix, [image], [hidden_b], exe)
[inference_program, feed_target_names, fetch_targets] = (
paddle.static.load_inference_model(path_prefix, exe))
tensor_img = np.array(np.random.random((64, 784)), dtype=np.float32)
results = exe.run(inference_program,
feed={feed_target_names[0]: tensor_img},
fetch_list=fetch_targets)
# In this example, the inference program was saved in file
# "./infer_model.pdmodel" and parameters were saved in file
# " ./infer_model.pdiparams".
# By the inference program, feed_target_names and
# fetch_targets, we can use an executor to run the inference
# program to get the inference result.
"""
# check kwargs
supported_args
=
(
'model_filename'
,
'params_filename'
)
deprecated_args
=
(
'pserver_endpoints'
,
)
caller
=
inspect
.
currentframe
().
f_code
.
co_name
_check_args
(
caller
,
kwargs
,
supported_args
,
deprecated_args
)
# load from memory
if
path_prefix
is
None
:
_logger
.
warning
(
"Load inference model from memory is deprecated."
)
model_filename
=
kwargs
.
get
(
'model_filename'
,
None
)
params_filename
=
kwargs
.
get
(
'params_filename'
,
None
)
if
params_filename
is
None
:
raise
ValueError
(
"params_filename cannot be None when path_prefix is None."
)
load_dirname
=
''
program_bytes
=
model_filename
params_bytes
=
params_filename
# load from file
else
:
# check and norm path_prefix
path_prefix
=
_normalize_path_prefix
(
path_prefix
)
# set model_path and params_path in new way,
# path_prefix represents a file path without suffix in this case.
if
not
kwargs
:
model_path
=
path_prefix
+
".pdmodel"
params_path
=
path_prefix
+
".pdiparams"
# set model_path and params_path in old way for compatible,
# path_prefix represents a directory path.
else
:
model_filename
=
kwargs
.
get
(
'model_filename'
,
None
)
params_filename
=
kwargs
.
get
(
'params_filename'
,
None
)
# set model_path
if
model_filename
is
None
:
model_path
=
os
.
path
.
join
(
path_prefix
,
"__model__"
)
else
:
model_path
=
os
.
path
.
join
(
path_prefix
,
model_filename
+
".pdmodel"
)
if
not
os
.
path
.
exists
(
model_path
):
model_path
=
os
.
path
.
join
(
path_prefix
,
model_filename
)
# set params_path
if
params_filename
is
None
:
params_path
=
os
.
path
.
join
(
path_prefix
,
""
)
else
:
params_path
=
os
.
path
.
join
(
path_prefix
,
params_filename
+
".pdiparams"
)
if
not
os
.
path
.
exists
(
params_path
):
params_path
=
os
.
path
.
join
(
path_prefix
,
params_filename
)
_logger
.
warning
(
"The old way to load inference model is deprecated."
" model path: {}, params path: {}"
.
format
(
model_path
,
params_path
))
program_bytes
=
load_from_file
(
model_path
)
load_dirname
=
os
.
path
.
dirname
(
params_path
)
params_filename
=
os
.
path
.
basename
(
params_path
)
# load params data
params_path
=
os
.
path
.
join
(
load_dirname
,
params_filename
)
params_bytes
=
load_from_file
(
params_path
)
# deserialize bytes to program
program
=
deserialize_program
(
program_bytes
)
# deserialize bytes to params
deserialize_persistables
(
program
,
params_bytes
,
executor
)
feed_target_names
=
program
.
desc
.
get_feed_target_names
()
fetch_target_names
=
program
.
desc
.
get_fetch_target_names
()
fetch_targets
=
[
program
.
global_block
().
var
(
name
)
for
name
in
fetch_target_names
]
return
[
program
,
feed_target_names
,
fetch_targets
]
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录