提交 9958100e 编写于 作者: H HexToString

open flags

上级 887ff0fe
......@@ -100,6 +100,8 @@ if __name__ == '__main__':
print("each thread cost: {}s. ".format(avg_cost))
print("qps: {}samples/s".format(args.batch_size * total_number / (
avg_cost * args.thread)))
print("qps(request): {}samples/s".format(total_number / (avg_cost *
args.thread)))
print("total count: {} ".format(total_number))
if os.getenv("FLAGS_serving_latency"):
show_latency(result[1])
rm profile_log*
rm -rf resnet_log*
export CUDA_VISIBLE_DEVICES=0,1,2,3
#export FLAGS_profile_server=1
#export FLAGS_profile_client=1
export FLAGS_profile_server=1
export FLAGS_profile_client=1
export FLAGS_serving_latency=1
gpu_id=3
#save cpu and gpu utilization log
......@@ -18,9 +18,9 @@ sleep 15
#warm up
python3.6 benchmark.py --thread 1 --batch_size 1 --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1
echo -e "import psutil\nimport time\nwhile True:\n\tcpu_res = psutil.cpu_percent()\n\twith open('cpu.txt', 'a+') as f:\n\t\tf.write(f'{cpu_res}\\\n')\n\ttime.sleep(0.1)" > cpu.py
for thread_num in 1 2 4 8
for thread_num in 1 2 4 8 16
do
for batch_size in 1 4 8 16 32 64
for batch_size in 1 4 8 16 32
do
job_bt=`date '+%Y%m%d%H%M%S'`
nvidia-smi --id=$gpu_id --query-compute-apps=used_memory --format=csv -lms 100 > gpu_memory_use.log 2>&1 &
......@@ -47,7 +47,7 @@ do
awk -F" " '{sum+=$1} END {print "GPU_UTILIZATION:", sum/NR, sum, NR }' gpu_utilization.log.tmp >> profile_log_$1
rm -rf gpu_memory_use.log gpu_utilization.log gpu_utilization.log.tmp
python3.6 ../util/show_profile.py profile $thread_num >> profile_log_$1
tail -n 9 profile >> profile_log_$1
tail -n 10 profile >> profile_log_$1
echo "" >> profile_log_$1
done
done
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册