Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
993b29a9
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
993b29a9
编写于
12月 24, 2021
作者:
T
Thomas Young
提交者:
GitHub
12月 24, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1572 from Intsigstephon/add_cpp_pipeline
add cpp pipeline serving for pp-shitu
上级
b2fb27ec
4b432695
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
1033 addition
and
0 deletion
+1033
-0
core/general-server/op/CMakeLists.txt
core/general-server/op/CMakeLists.txt
+4
-0
core/general-server/op/general_feature_extract_op.cpp
core/general-server/op/general_feature_extract_op.cpp
+108
-0
core/general-server/op/general_feature_extract_op.h
core/general-server/op/general_feature_extract_op.h
+37
-0
core/general-server/op/general_picodet_op.cpp
core/general-server/op/general_picodet_op.cpp
+371
-0
core/general-server/op/general_picodet_op.h
core/general-server/op/general_picodet_op.h
+183
-0
core/predictor/tools/pp_shitu_tools/preprocess_op.cpp
core/predictor/tools/pp_shitu_tools/preprocess_op.cpp
+90
-0
core/predictor/tools/pp_shitu_tools/preprocess_op.h
core/predictor/tools/pp_shitu_tools/preprocess_op.h
+55
-0
examples/C++/PaddleClas/pp_shitu/README.md
examples/C++/PaddleClas/pp_shitu/README.md
+24
-0
examples/C++/PaddleClas/pp_shitu/README_CN.md
examples/C++/PaddleClas/pp_shitu/README_CN.md
+24
-0
examples/C++/PaddleClas/pp_shitu/run_cpp_serving.sh
examples/C++/PaddleClas/pp_shitu/run_cpp_serving.sh
+4
-0
examples/C++/PaddleClas/pp_shitu/test_cpp_serving_pipeline.py
...ples/C++/PaddleClas/pp_shitu/test_cpp_serving_pipeline.py
+133
-0
未找到文件。
core/general-server/op/CMakeLists.txt
浏览文件 @
993b29a9
FILE
(
GLOB op_srcs
${
CMAKE_CURRENT_LIST_DIR
}
/*.cpp
${
CMAKE_CURRENT_LIST_DIR
}
/../../predictor/tools/quant.cpp
)
if
(
WITH_OPENCV
)
FILE
(
GLOB ocrtools_srcs
${
CMAKE_CURRENT_LIST_DIR
}
/../../predictor/tools/ocrtools/*.cpp
)
FILE
(
GLOB ppshitu_tools_srcs
${
CMAKE_CURRENT_LIST_DIR
}
/../../predictor/tools/pp_shitu_tools/*.cpp
)
LIST
(
APPEND op_srcs
${
ppshitu_tools_srcs
}
)
LIST
(
APPEND op_srcs
${
ocrtools_srcs
}
)
else
()
set
(
EXCLUDE_DIR
"general_detection_op.cpp"
)
set
(
EXCLUDE_DIR
"general_picodet_op.cpp"
)
set
(
EXCLUDE_DIR
"general_feature_extract_op.cpp"
)
foreach
(
TMP_PATH
${
op_srcs
}
)
string
(
FIND
${
TMP_PATH
}
${
EXCLUDE_DIR
}
EXCLUDE_DIR_FOUND
)
if
(
NOT
${
EXCLUDE_DIR_FOUND
}
EQUAL -1
)
...
...
core/general-server/op/general_feature_extract_op.cpp
0 → 100644
浏览文件 @
993b29a9
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/general_feature_extract_op.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
using
baidu
::
paddle_serving
::
Timer
;
using
baidu
::
paddle_serving
::
predictor
::
MempoolWrapper
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Tensor
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Response
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Request
;
using
baidu
::
paddle_serving
::
predictor
::
InferManager
;
using
baidu
::
paddle_serving
::
predictor
::
PaddleGeneralModelConfig
;
int
GeneralFeatureExtractOp
::
inference
()
{
VLOG
(
2
)
<<
"Going to run inference"
;
const
std
::
vector
<
std
::
string
>
pre_node_names
=
pre_names
();
if
(
pre_node_names
.
size
()
!=
1
)
{
LOG
(
ERROR
)
<<
"This op("
<<
op_name
()
<<
") can only have one predecessor op, but received "
<<
pre_node_names
.
size
();
return
-
1
;
}
const
std
::
string
pre_name
=
pre_node_names
[
0
];
const
GeneralBlob
*
input_blob
=
get_depend_argument
<
GeneralBlob
>
(
pre_name
);
if
(
!
input_blob
)
{
LOG
(
ERROR
)
<<
"input_blob is nullptr,error"
;
return
-
1
;
}
uint64_t
log_id
=
input_blob
->
GetLogId
();
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") Get precedent op name: "
<<
pre_name
;
GeneralBlob
*
output_blob
=
mutable_data
<
GeneralBlob
>
();
if
(
!
output_blob
)
{
LOG
(
ERROR
)
<<
"output_blob is nullptr,error"
;
return
-
1
;
}
output_blob
->
SetLogId
(
log_id
);
if
(
!
input_blob
)
{
LOG
(
ERROR
)
<<
"(logid="
<<
log_id
<<
") Failed mutable depended argument, op:"
<<
pre_name
;
return
-
1
;
}
const
TensorVector
*
in
=
&
input_blob
->
tensor_vector
;
TensorVector
*
out
=
&
output_blob
->
tensor_vector
;
int
batch_size
=
input_blob
->
_batch_size
;
output_blob
->
_batch_size
=
batch_size
;
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") infer batch size: "
<<
batch_size
;
Timer
timeline
;
int64_t
start
=
timeline
.
TimeStampUS
();
timeline
.
Start
();
paddle
::
PaddleTensor
boxes
=
in
->
at
(
1
);
TensorVector
*
real_in
=
new
TensorVector
();
if
(
!
real_in
)
{
LOG
(
ERROR
)
<<
"real_in is nullptr, error"
;
return
-
1
;
}
real_in
->
push_back
(
in
->
at
(
0
));
if
(
InferManager
::
instance
().
infer
(
engine_name
().
c_str
(),
real_in
,
out
,
batch_size
))
{
LOG
(
ERROR
)
<<
"(logid="
<<
log_id
<<
") Failed do infer in fluid model: "
<<
engine_name
().
c_str
();
return
-
1
;
}
out
->
push_back
(
boxes
);
int64_t
end
=
timeline
.
TimeStampUS
();
CopyBlobInfo
(
input_blob
,
output_blob
);
AddBlobInfo
(
output_blob
,
start
);
AddBlobInfo
(
output_blob
,
end
);
return
0
;
}
DEFINE_OP
(
GeneralFeatureExtractOp
);
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
core/general-server/op/general_feature_extract_op.h
0 → 100644
浏览文件 @
993b29a9
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "paddle_inference_api.h" // NOLINT
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
class
GeneralFeatureExtractOp
:
public
baidu
::
paddle_serving
::
predictor
::
OpWithChannel
<
GeneralBlob
>
{
public:
typedef
std
::
vector
<
paddle
::
PaddleTensor
>
TensorVector
;
DECLARE_OP
(
GeneralFeatureExtractOp
);
int
inference
();
};
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
core/general-server/op/general_picodet_op.cpp
0 → 100644
浏览文件 @
993b29a9
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/general_picodet_op.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
using
baidu
::
paddle_serving
::
Timer
;
using
baidu
::
paddle_serving
::
predictor
::
MempoolWrapper
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Tensor
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Response
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Request
;
using
baidu
::
paddle_serving
::
predictor
::
InferManager
;
using
baidu
::
paddle_serving
::
predictor
::
PaddleGeneralModelConfig
;
int
GeneralPicodetOp
::
inference
()
{
VLOG
(
2
)
<<
"Going to run inference"
;
const
std
::
vector
<
std
::
string
>
pre_node_names
=
pre_names
();
if
(
pre_node_names
.
size
()
!=
1
)
{
LOG
(
ERROR
)
<<
"This op("
<<
op_name
()
<<
") can only have one predecessor op, but received "
<<
pre_node_names
.
size
();
return
-
1
;
}
const
std
::
string
pre_name
=
pre_node_names
[
0
];
const
GeneralBlob
*
input_blob
=
get_depend_argument
<
GeneralBlob
>
(
pre_name
);
if
(
!
input_blob
)
{
LOG
(
ERROR
)
<<
"input_blob is nullptr,error"
;
return
-
1
;
}
uint64_t
log_id
=
input_blob
->
GetLogId
();
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") Get precedent op name: "
<<
pre_name
;
GeneralBlob
*
output_blob
=
mutable_data
<
GeneralBlob
>
();
if
(
!
output_blob
)
{
LOG
(
ERROR
)
<<
"output_blob is nullptr,error"
;
return
-
1
;
}
output_blob
->
SetLogId
(
log_id
);
if
(
!
input_blob
)
{
LOG
(
ERROR
)
<<
"(logid="
<<
log_id
<<
") Failed mutable depended argument, op:"
<<
pre_name
;
return
-
1
;
}
const
TensorVector
*
in
=
&
input_blob
->
tensor_vector
;
TensorVector
*
out
=
&
output_blob
->
tensor_vector
;
int
batch_size
=
input_blob
->
_batch_size
;
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") input batch size: "
<<
batch_size
;
output_blob
->
_batch_size
=
batch_size
;
//get image shape
float
*
data
=
(
float
*
)
in
->
at
(
0
).
data
.
data
();
int
height
=
data
[
0
];
int
width
=
data
[
1
];
VLOG
(
2
)
<<
"image width: "
<<
width
;
VLOG
(
2
)
<<
"image height: "
<<
height
;
///////////////////det preprocess begin/////////////////////////
//show raw image
unsigned
char
*
img_data
=
static_cast
<
unsigned
char
*>
(
in
->
at
(
1
).
data
.
data
());
cv
::
Mat
origin
(
height
,
width
,
CV_8UC3
,
img_data
);
// cv::imwrite("/workspace/origin_image.jpg", origin);
cv
::
Mat
origin_img
=
origin
.
clone
();
cv
::
cvtColor
(
origin
,
origin
,
cv
::
COLOR_BGR2RGB
);
InitInfo_Run
(
&
origin
,
&
imgblob
);
Resize_Run
(
&
origin
,
&
imgblob
);
NormalizeImage_Run
(
&
origin
,
&
imgblob
);
Permute_Run
(
&
origin
,
&
imgblob
);
///////////////////det preprocess end/////////////////////////
Timer
timeline
;
int64_t
start
=
timeline
.
TimeStampUS
();
timeline
.
Start
();
//generate real_in
TensorVector
*
real_in
=
new
TensorVector
();
if
(
!
real_in
)
{
LOG
(
ERROR
)
<<
"real_in is nullptr, error"
;
return
-
1
;
}
//generate im_shape
int
in_num
=
2
;
size_t
databuf_size
=
in_num
*
sizeof
(
float
);
void
*
databuf_data
=
MempoolWrapper
::
instance
().
malloc
(
databuf_size
);
if
(
!
databuf_data
)
{
LOG
(
ERROR
)
<<
"Malloc failed, size: "
<<
databuf_size
;
return
-
1
;
}
float
*
databuf_float
=
reinterpret_cast
<
float
*>
(
databuf_data
);
*
databuf_float
=
imgblob
.
im_shape_
[
0
];
databuf_float
++
;
*
databuf_float
=
imgblob
.
im_shape_
[
1
];
char
*
databuf_char
=
reinterpret_cast
<
char
*>
(
databuf_data
);
paddle
::
PaddleBuf
paddleBuf
(
databuf_char
,
databuf_size
);
paddle
::
PaddleTensor
tensor_in
;
tensor_in
.
name
=
"im_shape"
;
tensor_in
.
dtype
=
paddle
::
PaddleDType
::
FLOAT32
;
tensor_in
.
shape
=
{
1
,
2
};
tensor_in
.
lod
=
in
->
at
(
0
).
lod
;
tensor_in
.
data
=
paddleBuf
;
real_in
->
push_back
(
tensor_in
);
//generate scale_factor
databuf_size
=
in_num
*
sizeof
(
float
);
databuf_data
=
MempoolWrapper
::
instance
().
malloc
(
databuf_size
);
if
(
!
databuf_data
)
{
LOG
(
ERROR
)
<<
"Malloc failed, size: "
<<
databuf_size
;
return
-
1
;
}
databuf_float
=
reinterpret_cast
<
float
*>
(
databuf_data
);
*
databuf_float
=
imgblob
.
scale_factor_
[
0
];
databuf_float
++
;
*
databuf_float
=
imgblob
.
scale_factor_
[
1
];
databuf_char
=
reinterpret_cast
<
char
*>
(
databuf_data
);
paddle
::
PaddleBuf
paddleBuf_2
(
databuf_char
,
databuf_size
);
paddle
::
PaddleTensor
tensor_in_2
;
tensor_in_2
.
name
=
"scale_factor"
;
tensor_in_2
.
dtype
=
paddle
::
PaddleDType
::
FLOAT32
;
tensor_in_2
.
shape
=
{
1
,
2
};
tensor_in_2
.
lod
=
in
->
at
(
0
).
lod
;
tensor_in_2
.
data
=
paddleBuf_2
;
real_in
->
push_back
(
tensor_in_2
);
//genarate image
in_num
=
imgblob
.
im_data_
.
size
();
databuf_size
=
in_num
*
sizeof
(
float
);
databuf_data
=
MempoolWrapper
::
instance
().
malloc
(
databuf_size
);
if
(
!
databuf_data
)
{
LOG
(
ERROR
)
<<
"Malloc failed, size: "
<<
databuf_size
;
return
-
1
;
}
memcpy
(
databuf_data
,
imgblob
.
im_data_
.
data
(),
databuf_size
);
databuf_char
=
reinterpret_cast
<
char
*>
(
databuf_data
);
paddle
::
PaddleBuf
paddleBuf_3
(
databuf_char
,
databuf_size
);
paddle
::
PaddleTensor
tensor_in_3
;
tensor_in_3
.
name
=
"image"
;
tensor_in_3
.
dtype
=
paddle
::
PaddleDType
::
FLOAT32
;
tensor_in_3
.
shape
=
{
1
,
3
,
imgblob
.
in_net_shape_
[
0
],
imgblob
.
in_net_shape_
[
1
]};
tensor_in_3
.
lod
=
in
->
at
(
0
).
lod
;
tensor_in_3
.
data
=
paddleBuf_3
;
real_in
->
push_back
(
tensor_in_3
);
if
(
InferManager
::
instance
().
infer
(
engine_name
().
c_str
(),
real_in
,
out
,
batch_size
))
{
LOG
(
ERROR
)
<<
"(logid="
<<
log_id
<<
") Failed do infer in fluid model: "
<<
engine_name
().
c_str
();
return
-
1
;
}
///////////////////det postprocess begin/////////////////////////
//get output_data_
std
::
vector
<
float
>
output_data_
;
int
infer_outnum
=
out
->
size
();
paddle
::
PaddleTensor
element
=
out
->
at
(
0
);
std
::
vector
<
int
>
element_shape
=
element
.
shape
;
//get data len
int
total_num
=
1
;
for
(
auto
value_shape
:
element_shape
)
{
total_num
*=
value_shape
;
}
output_data_
.
resize
(
total_num
);
float
*
data_out
=
(
float
*
)
element
.
data
.
data
();
for
(
int
j
=
0
;
j
<
total_num
;
j
++
)
{
output_data_
[
j
]
=
data_out
[
j
];
}
//det postprocess
//1) get detect result
if
(
output_data_
.
size
()
>
max_detect_results
*
6
){
output_data_
.
resize
(
max_detect_results
*
6
);
}
std
::
vector
<
ObjectResult
>
result
;
int
detect_num
=
output_data_
.
size
()
/
6
;
for
(
int
m
=
0
;
m
<
detect_num
;
m
++
)
{
// Class id
int
class_id
=
static_cast
<
int
>
(
round
(
output_data_
[
0
+
m
*
6
]));
// Confidence score
float
score
=
output_data_
[
1
+
m
*
6
];
// Box coordinate
int
xmin
=
(
output_data_
[
2
+
m
*
6
]);
int
ymin
=
(
output_data_
[
3
+
m
*
6
]);
int
xmax
=
(
output_data_
[
4
+
m
*
6
]);
int
ymax
=
(
output_data_
[
5
+
m
*
6
]);
ObjectResult
result_item
;
result_item
.
rect
=
{
xmin
,
ymin
,
xmax
,
ymax
};
result_item
.
class_id
=
class_id
;
result_item
.
confidence
=
score
;
result
.
push_back
(
result_item
);
}
//2) add the whole image
ObjectResult
result_whole_img
=
{
{
0
,
0
,
width
-
1
,
height
-
1
},
0
,
1.0
};
result
.
push_back
(
result_whole_img
);
//3) crop image and do preprocess. concanate the data
cv
::
Mat
srcimg
;
cv
::
cvtColor
(
origin_img
,
srcimg
,
cv
::
COLOR_BGR2RGB
);
std
::
vector
<
float
>
all_data
;
for
(
int
j
=
0
;
j
<
result
.
size
();
++
j
)
{
int
w
=
result
[
j
].
rect
[
2
]
-
result
[
j
].
rect
[
0
];
int
h
=
result
[
j
].
rect
[
3
]
-
result
[
j
].
rect
[
1
];
cv
::
Rect
rect
(
result
[
j
].
rect
[
0
],
result
[
j
].
rect
[
1
],
w
,
h
);
cv
::
Mat
crop_img
=
srcimg
(
rect
);
cv
::
Mat
resize_img
;
resize_op_
.
Run
(
crop_img
,
resize_img
,
resize_short_
,
resize_size_
);
normalize_op_
.
Run
(
&
resize_img
,
mean_
,
std_
,
scale_
);
std
::
vector
<
float
>
input
(
1
*
3
*
resize_img
.
rows
*
resize_img
.
cols
,
0.0
f
);
permute_op_
.
Run
(
&
resize_img
,
input
.
data
());
for
(
int
m
=
0
;
m
<
input
.
size
();
m
++
)
{
all_data
.
push_back
(
input
[
m
]);
}
}
///////////////////det postprocess begin/////////////////////////
//generate new Tensors;
//"x"
int
out_num
=
all_data
.
size
();
int
databuf_size_out
=
out_num
*
sizeof
(
float
);
void
*
databuf_data_out
=
MempoolWrapper
::
instance
().
malloc
(
databuf_size_out
);
if
(
!
databuf_data_out
)
{
LOG
(
ERROR
)
<<
"Malloc failed, size: "
<<
databuf_size_out
;
return
-
1
;
}
memcpy
(
databuf_data_out
,
all_data
.
data
(),
databuf_size_out
);
char
*
databuf_char_out
=
reinterpret_cast
<
char
*>
(
databuf_data_out
);
paddle
::
PaddleBuf
paddleBuf_out
(
databuf_char_out
,
databuf_size_out
);
paddle
::
PaddleTensor
tensor_out
;
tensor_out
.
name
=
"x"
;
tensor_out
.
dtype
=
paddle
::
PaddleDType
::
FLOAT32
;
tensor_out
.
shape
=
{
result
.
size
(),
3
,
224
,
224
};
tensor_out
.
data
=
paddleBuf_out
;
tensor_out
.
lod
=
in
->
at
(
0
).
lod
;
out
->
push_back
(
tensor_out
);
//"boxes"
int
box_size_out
=
result
.
size
()
*
6
*
sizeof
(
float
);
void
*
box_data_out
=
MempoolWrapper
::
instance
().
malloc
(
box_size_out
);
if
(
!
box_data_out
)
{
LOG
(
ERROR
)
<<
"Malloc failed, size: "
<<
box_data_out
;
return
-
1
;
}
memcpy
(
box_data_out
,
out
->
at
(
0
).
data
.
data
(),
box_size_out
-
6
*
sizeof
(
float
));
float
*
box_float_out
=
reinterpret_cast
<
float
*>
(
box_data_out
);
box_float_out
+=
(
result
.
size
()
-
1
)
*
6
;
box_float_out
[
0
]
=
0.0
;
box_float_out
[
1
]
=
1.0
;
box_float_out
[
2
]
=
0.0
;
box_float_out
[
3
]
=
0.0
;
box_float_out
[
4
]
=
width
-
1
;
box_float_out
[
5
]
=
height
-
1
;
char
*
box_char_out
=
reinterpret_cast
<
char
*>
(
box_data_out
);
paddle
::
PaddleBuf
paddleBuf_out_2
(
box_char_out
,
box_size_out
);
paddle
::
PaddleTensor
tensor_out_2
;
tensor_out_2
.
name
=
"boxes"
;
tensor_out_2
.
dtype
=
paddle
::
PaddleDType
::
FLOAT32
;
tensor_out_2
.
shape
=
{
result
.
size
(),
6
};
tensor_out_2
.
data
=
paddleBuf_out_2
;
tensor_out_2
.
lod
=
in
->
at
(
0
).
lod
;
out
->
push_back
(
tensor_out_2
);
out
->
erase
(
out
->
begin
(),
out
->
begin
()
+
infer_outnum
);
int64_t
end
=
timeline
.
TimeStampUS
();
CopyBlobInfo
(
input_blob
,
output_blob
);
AddBlobInfo
(
output_blob
,
start
);
AddBlobInfo
(
output_blob
,
end
);
return
0
;
}
DEFINE_OP
(
GeneralPicodetOp
);
void
GeneralPicodetOp
::
Postprocess
(
const
std
::
vector
<
cv
::
Mat
>
mats
,
std
::
vector
<
ObjectResult
>
*
result
,
std
::
vector
<
int
>
bbox_num
,
bool
is_rbox
,
std
::
vector
<
float
>
output_data_
,
std
::
vector
<
int
>
out_bbox_num_data_
){
result
->
clear
();
int
start_idx
=
0
;
for
(
int
im_id
=
0
;
im_id
<
mats
.
size
();
im_id
++
)
{
cv
::
Mat
raw_mat
=
mats
[
im_id
];
int
rh
=
1
;
int
rw
=
1
;
for
(
int
j
=
start_idx
;
j
<
start_idx
+
bbox_num
[
im_id
];
j
++
)
{
if
(
is_rbox
)
{
// Class id + score + 8 parameters
// Class id
int
class_id
=
static_cast
<
int
>
(
round
(
output_data_
[
0
+
j
*
10
]));
// Confidence score
float
score
=
output_data_
[
1
+
j
*
10
];
int
x1
=
(
output_data_
[
2
+
j
*
10
]
*
rw
);
int
y1
=
(
output_data_
[
3
+
j
*
10
]
*
rh
);
int
x2
=
(
output_data_
[
4
+
j
*
10
]
*
rw
);
int
y2
=
(
output_data_
[
5
+
j
*
10
]
*
rh
);
int
x3
=
(
output_data_
[
6
+
j
*
10
]
*
rw
);
int
y3
=
(
output_data_
[
7
+
j
*
10
]
*
rh
);
int
x4
=
(
output_data_
[
8
+
j
*
10
]
*
rw
);
int
y4
=
(
output_data_
[
9
+
j
*
10
]
*
rh
);
ObjectResult
result_item
;
result_item
.
rect
=
{
x1
,
y1
,
x2
,
y2
,
x3
,
y3
,
x4
,
y4
};
result_item
.
class_id
=
class_id
;
result_item
.
confidence
=
score
;
result
->
push_back
(
result_item
);
}
else
{
// Class id
int
class_id
=
static_cast
<
int
>
(
round
(
output_data_
[
0
+
j
*
6
]));
// Confidence score
float
score
=
output_data_
[
1
+
j
*
6
];
//xmin, ymin, xmax, ymax
int
xmin
=
(
output_data_
[
2
+
j
*
6
]
*
rw
);
int
ymin
=
(
output_data_
[
3
+
j
*
6
]
*
rh
);
int
xmax
=
(
output_data_
[
4
+
j
*
6
]
*
rw
);
int
ymax
=
(
output_data_
[
5
+
j
*
6
]
*
rh
);
//get width; get height
int
wd
=
xmax
-
xmin
;
//width
int
hd
=
ymax
-
ymin
;
//height
ObjectResult
result_item
;
result_item
.
rect
=
{
xmin
,
ymin
,
xmax
,
ymax
};
result_item
.
class_id
=
class_id
;
result_item
.
confidence
=
score
;
result
->
push_back
(
result_item
);
}
}
start_idx
+=
bbox_num
[
im_id
];
}
}
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
core/general-server/op/general_picodet_op.h
0 → 100644
浏览文件 @
993b29a9
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include <numeric>
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "core/predictor/tools/pp_shitu_tools/preprocess_op.h"
#include "paddle_inference_api.h" // NOLINT
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
struct
ObjectResult
{
// Rectangle coordinates of detected object: left, right, top, down
std
::
vector
<
int
>
rect
;
// Class id of detected object
int
class_id
;
// Confidence of detected object
float
confidence
;
};
class
ImageBlob
{
public:
// image width and height
std
::
vector
<
float
>
im_shape_
;
// Buffer for image data after preprocessing
std
::
vector
<
float
>
im_data_
;
// in net data shape(after pad)
std
::
vector
<
float
>
in_net_shape_
;
// Scale factor for image size to origin image size
std
::
vector
<
float
>
scale_factor_
;
};
class
GeneralPicodetOp
:
public
baidu
::
paddle_serving
::
predictor
::
OpWithChannel
<
GeneralBlob
>
{
public:
typedef
std
::
vector
<
paddle
::
PaddleTensor
>
TensorVector
;
DECLARE_OP
(
GeneralPicodetOp
);
int
inference
();
//op to do inference
private:
// rec preprocess
std
::
vector
<
float
>
mean_
=
{
0.485
f
,
0.456
f
,
0.406
f
};
std
::
vector
<
float
>
std_
=
{
0.229
f
,
0.224
f
,
0.225
f
};
float
scale_
=
0.00392157
;
int
resize_size_
=
224
;
int
resize_short_
=
224
;
Feature
::
ResizeImg
resize_op_
;
Feature
::
Normalize
normalize_op_
;
Feature
::
Permute
permute_op_
;
private:
// det pre-process
ImageBlob
imgblob
;
//resize
int
interp_
=
2
;
bool
keep_ratio_
=
false
;
std
::
vector
<
int
>
target_size_
=
{
640
,
640
};
std
::
vector
<
int
>
in_net_shape_
;
void
InitInfo_Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
{
data
->
im_shape_
=
{
static_cast
<
float
>
(
im
->
rows
),
static_cast
<
float
>
(
im
->
cols
)};
data
->
scale_factor_
=
{
1.
,
1.
};
data
->
in_net_shape_
=
{
static_cast
<
float
>
(
im
->
rows
),
static_cast
<
float
>
(
im
->
cols
)};
}
void
NormalizeImage_Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
{
double
e
=
1.0
;
e
/=
255.0
;
(
*
im
).
convertTo
(
*
im
,
CV_32FC3
,
e
);
for
(
int
h
=
0
;
h
<
im
->
rows
;
h
++
)
{
for
(
int
w
=
0
;
w
<
im
->
cols
;
w
++
)
{
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
0
]
=
(
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
0
]
-
mean_
[
0
])
/
std_
[
0
];
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
1
]
=
(
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
1
]
-
mean_
[
1
])
/
std_
[
1
];
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
2
]
=
(
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
2
]
-
mean_
[
2
])
/
std_
[
2
];
}
}
VLOG
(
2
)
<<
"enter NormalizeImage_Run run"
;
VLOG
(
2
)
<<
data
->
im_shape_
[
0
];
VLOG
(
2
)
<<
data
->
im_shape_
[
1
];
VLOG
(
2
)
<<
data
->
scale_factor_
[
0
];
VLOG
(
2
)
<<
data
->
scale_factor_
[
1
];
}
void
Resize_Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
{
auto
resize_scale
=
GenerateScale
(
*
im
);
data
->
im_shape_
=
{
static_cast
<
float
>
(
im
->
cols
*
resize_scale
.
first
),
static_cast
<
float
>
(
im
->
rows
*
resize_scale
.
second
)};
data
->
in_net_shape_
=
{
static_cast
<
float
>
(
im
->
cols
*
resize_scale
.
first
),
static_cast
<
float
>
(
im
->
rows
*
resize_scale
.
second
)};
cv
::
resize
(
*
im
,
*
im
,
cv
::
Size
(),
resize_scale
.
first
,
resize_scale
.
second
,
interp_
);
data
->
im_shape_
=
{
static_cast
<
float
>
(
im
->
rows
),
static_cast
<
float
>
(
im
->
cols
),
};
data
->
scale_factor_
=
{
resize_scale
.
second
,
resize_scale
.
first
,
};
VLOG
(
2
)
<<
"enter resize run"
;
VLOG
(
2
)
<<
data
->
im_shape_
[
0
];
VLOG
(
2
)
<<
data
->
im_shape_
[
1
];
VLOG
(
2
)
<<
data
->
scale_factor_
[
0
];
VLOG
(
2
)
<<
data
->
scale_factor_
[
1
];
}
std
::
pair
<
double
,
double
>
GenerateScale
(
const
cv
::
Mat
&
im
)
{
std
::
pair
<
double
,
double
>
resize_scale
;
int
origin_w
=
im
.
cols
;
int
origin_h
=
im
.
rows
;
if
(
keep_ratio_
)
{
int
im_size_max
=
std
::
max
(
origin_w
,
origin_h
);
int
im_size_min
=
std
::
min
(
origin_w
,
origin_h
);
int
target_size_max
=
*
std
::
max_element
(
target_size_
.
begin
(),
target_size_
.
end
());
int
target_size_min
=
*
std
::
min_element
(
target_size_
.
begin
(),
target_size_
.
end
());
double
scale_min
=
static_cast
<
double
>
(
target_size_min
)
/
static_cast
<
double
>
(
im_size_min
);
double
scale_max
=
static_cast
<
double
>
(
target_size_max
)
/
static_cast
<
double
>
(
im_size_max
);
double
scale_ratio
=
std
::
min
(
scale_min
,
scale_max
);
resize_scale
=
{
scale_ratio
,
scale_ratio
};
}
else
{
resize_scale
.
first
=
static_cast
<
double
>
(
target_size_
[
1
])
/
static_cast
<
double
>
(
origin_w
);
resize_scale
.
second
=
static_cast
<
double
>
(
target_size_
[
0
])
/
static_cast
<
double
>
(
origin_h
);
}
return
resize_scale
;
}
void
Permute_Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
{
int
rh
=
im
->
rows
;
int
rw
=
im
->
cols
;
int
rc
=
im
->
channels
();
(
data
->
im_data_
).
resize
(
rc
*
rh
*
rw
);
float
*
base
=
(
data
->
im_data_
).
data
();
for
(
int
i
=
0
;
i
<
rc
;
++
i
)
{
cv
::
extractChannel
(
*
im
,
cv
::
Mat
(
rh
,
rw
,
CV_32FC1
,
base
+
i
*
rh
*
rw
),
i
);
}
}
//det process
int
max_detect_results
=
5
;
void
Postprocess
(
const
std
::
vector
<
cv
::
Mat
>
mats
,
std
::
vector
<
ObjectResult
>
*
result
,
std
::
vector
<
int
>
bbox_num
,
bool
is_rbox
,
std
::
vector
<
float
>
output_data_
,
std
::
vector
<
int
>
out_bbox_num_data_
);
};
// GeneralPicodetOp
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
core/predictor/tools/pp_shitu_tools/preprocess_op.cpp
0 → 100644
浏览文件 @
993b29a9
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "paddle_api.h"
#include "paddle_inference_api.h"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <math.h>
#include <numeric>
#include "preprocess_op.h"
namespace
Feature
{
void
Permute
::
Run
(
const
cv
::
Mat
*
im
,
float
*
data
)
{
int
rh
=
im
->
rows
;
int
rw
=
im
->
cols
;
int
rc
=
im
->
channels
();
for
(
int
i
=
0
;
i
<
rc
;
++
i
)
{
cv
::
extractChannel
(
*
im
,
cv
::
Mat
(
rh
,
rw
,
CV_32FC1
,
data
+
i
*
rh
*
rw
),
i
);
}
}
void
Normalize
::
Run
(
cv
::
Mat
*
im
,
const
std
::
vector
<
float
>
&
mean
,
const
std
::
vector
<
float
>
&
std
,
float
scale
)
{
(
*
im
).
convertTo
(
*
im
,
CV_32FC3
,
scale
);
for
(
int
h
=
0
;
h
<
im
->
rows
;
h
++
)
{
for
(
int
w
=
0
;
w
<
im
->
cols
;
w
++
)
{
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
0
]
=
(
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
0
]
-
mean
[
0
])
/
std
[
0
];
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
1
]
=
(
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
1
]
-
mean
[
1
])
/
std
[
1
];
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
2
]
=
(
im
->
at
<
cv
::
Vec3f
>
(
h
,
w
)[
2
]
-
mean
[
2
])
/
std
[
2
];
}
}
}
void
CenterCropImg
::
Run
(
cv
::
Mat
&
img
,
const
int
crop_size
)
{
int
resize_w
=
img
.
cols
;
int
resize_h
=
img
.
rows
;
int
w_start
=
int
((
resize_w
-
crop_size
)
/
2
);
int
h_start
=
int
((
resize_h
-
crop_size
)
/
2
);
cv
::
Rect
rect
(
w_start
,
h_start
,
crop_size
,
crop_size
);
img
=
img
(
rect
);
}
void
ResizeImg
::
Run
(
const
cv
::
Mat
&
img
,
cv
::
Mat
&
resize_img
,
int
resize_short_size
,
int
size
)
{
int
resize_h
=
0
;
int
resize_w
=
0
;
if
(
size
>
0
)
{
resize_h
=
size
;
resize_w
=
size
;
}
else
{
int
w
=
img
.
cols
;
int
h
=
img
.
rows
;
float
ratio
=
1.
f
;
if
(
h
<
w
)
{
ratio
=
float
(
resize_short_size
)
/
float
(
h
);
}
else
{
ratio
=
float
(
resize_short_size
)
/
float
(
w
);
}
resize_h
=
round
(
float
(
h
)
*
ratio
);
resize_w
=
round
(
float
(
w
)
*
ratio
);
}
cv
::
resize
(
img
,
resize_img
,
cv
::
Size
(
resize_w
,
resize_h
));
}
}
// namespace Feature
core/predictor/tools/pp_shitu_tools/preprocess_op.h
0 → 100644
浏览文件 @
993b29a9
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>
#include <cstring>
#include <fstream>
#include <numeric>
using
namespace
std
;
namespace
Feature
{
class
Normalize
{
public:
virtual
void
Run
(
cv
::
Mat
*
im
,
const
std
::
vector
<
float
>
&
mean
,
const
std
::
vector
<
float
>
&
std
,
float
scale
);
};
// RGB -> CHW
class
Permute
{
public:
virtual
void
Run
(
const
cv
::
Mat
*
im
,
float
*
data
);
};
class
CenterCropImg
{
public:
virtual
void
Run
(
cv
::
Mat
&
im
,
const
int
crop_size
=
224
);
};
class
ResizeImg
{
public:
virtual
void
Run
(
const
cv
::
Mat
&
img
,
cv
::
Mat
&
resize_img
,
int
max_size_len
,
int
size
=
0
);
};
}
// namespace Feature
examples/C++/PaddleClas/pp_shitu/README.md
0 → 100644
浏览文件 @
993b29a9
# PP-Shitu
## Get Model
```
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/serving/pp_shitu.tar.gz
tar -xzvf pp_shitu.tar.gz
```
## Get test images and index
```
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/drink_dataset_v1.0.tar
tar -xvf drink_dataset_v1.0.tar
```
## RPC Service
### Start Service
```
sh run_cpp_serving.sh
```
### Client Prediction
```
python3 test_cpp_serving_pipeline.py ./drint_dataset_v1.0/test_images/nongfu_spring.jpeg
```
examples/C++/PaddleClas/pp_shitu/README_CN.md
0 → 100644
浏览文件 @
993b29a9
# PP-Shitu
## 获取模型
```
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/serving/pp_shitu.tar.gz
tar -xzvf pp_shitu.tar.gz
```
## 获取测试图像和index
```
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/drink_dataset_v1.0.tar
tar -xvf drink_dataset_v1.0.tar
```
## RPC 服务
### 启动服务端
```
sh run_cpp_serving.sh
```
### 客户端预测
```
python3 test_cpp_serving_pipeline.py ./drint_dataset_v1.0/test_images/nongfu_spring.jpeg
```
examples/C++/PaddleClas/pp_shitu/run_cpp_serving.sh
0 → 100644
浏览文件 @
993b29a9
rm
-rf
log
rm
-rf
workdir
*
export
GLOG_v
=
3
nohup
python3
-m
paddle_serving_server.serve
--model
picodet_PPLCNet_x2_5_mainbody_lite_v2.0_serving general_PPLCNet_x2_5_lite_v2.0_serving
--op
GeneralPicodetOp GeneralFeatureExtractOp
--port
9400 &
examples/C++/PaddleClas/pp_shitu/test_cpp_serving_pipeline.py
0 → 100644
浏览文件 @
993b29a9
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
numpy
as
np
from
paddle_serving_client
import
Client
from
paddle_serving_app.reader
import
*
import
cv2
import
faiss
import
os
import
pickle
rec_nms_thresold
=
0.05
rec_score_thres
=
0.5
feature_normalize
=
True
return_k
=
1
index_dir
=
"./drink_dataset_v1.0/index"
def
init_index
(
index_dir
):
assert
os
.
path
.
exists
(
os
.
path
.
join
(
index_dir
,
"vector.index"
)),
"vector.index not found ..."
assert
os
.
path
.
exists
(
os
.
path
.
join
(
index_dir
,
"id_map.pkl"
)),
"id_map.pkl not found ... "
searcher
=
faiss
.
read_index
(
os
.
path
.
join
(
index_dir
,
"vector.index"
))
with
open
(
os
.
path
.
join
(
index_dir
,
"id_map.pkl"
),
"rb"
)
as
fd
:
id_map
=
pickle
.
load
(
fd
)
return
searcher
,
id_map
#get box
def
nms_to_rec_results
(
results
,
thresh
=
0.1
):
filtered_results
=
[]
x1
=
np
.
array
([
r
[
"bbox"
][
0
]
for
r
in
results
]).
astype
(
"float32"
)
y1
=
np
.
array
([
r
[
"bbox"
][
1
]
for
r
in
results
]).
astype
(
"float32"
)
x2
=
np
.
array
([
r
[
"bbox"
][
2
]
for
r
in
results
]).
astype
(
"float32"
)
y2
=
np
.
array
([
r
[
"bbox"
][
3
]
for
r
in
results
]).
astype
(
"float32"
)
scores
=
np
.
array
([
r
[
"rec_scores"
]
for
r
in
results
])
areas
=
(
x2
-
x1
+
1
)
*
(
y2
-
y1
+
1
)
order
=
scores
.
argsort
()[::
-
1
]
while
order
.
size
>
0
:
i
=
order
[
0
]
xx1
=
np
.
maximum
(
x1
[
i
],
x1
[
order
[
1
:]])
yy1
=
np
.
maximum
(
y1
[
i
],
y1
[
order
[
1
:]])
xx2
=
np
.
minimum
(
x2
[
i
],
x2
[
order
[
1
:]])
yy2
=
np
.
minimum
(
y2
[
i
],
y2
[
order
[
1
:]])
w
=
np
.
maximum
(
0.0
,
xx2
-
xx1
+
1
)
h
=
np
.
maximum
(
0.0
,
yy2
-
yy1
+
1
)
inter
=
w
*
h
ovr
=
inter
/
(
areas
[
i
]
+
areas
[
order
[
1
:]]
-
inter
)
inds
=
np
.
where
(
ovr
<=
thresh
)[
0
]
order
=
order
[
inds
+
1
]
filtered_results
.
append
(
results
[
i
])
return
filtered_results
def
postprocess
(
fetch_dict
,
feature_normalize
,
det_boxes
,
searcher
,
id_map
,
return_k
,
rec_score_thres
,
rec_nms_thresold
):
batch_features
=
fetch_dict
[
"features"
]
#do feature norm
if
feature_normalize
:
feas_norm
=
np
.
sqrt
(
np
.
sum
(
np
.
square
(
batch_features
),
axis
=
1
,
keepdims
=
True
))
batch_features
=
np
.
divide
(
batch_features
,
feas_norm
)
scores
,
docs
=
searcher
.
search
(
batch_features
,
return_k
)
results
=
[]
for
i
in
range
(
scores
.
shape
[
0
]):
pred
=
{}
if
scores
[
i
][
0
]
>=
rec_score_thres
:
pred
[
"bbox"
]
=
[
int
(
x
)
for
x
in
det_boxes
[
i
,
2
:]]
pred
[
"rec_docs"
]
=
id_map
[
docs
[
i
][
0
]].
split
()[
1
]
pred
[
"rec_scores"
]
=
scores
[
i
][
0
]
results
.
append
(
pred
)
#do nms
results
=
nms_to_rec_results
(
results
,
rec_nms_thresold
)
return
results
#do client
if
__name__
==
"__main__"
:
client
=
Client
()
client
.
load_client_config
([
"picodet_PPLCNet_x2_5_mainbody_lite_v2.0_client"
,
"general_PPLCNet_x2_5_lite_v2.0_client"
])
client
.
connect
([
'127.0.0.1:9400'
])
im
=
cv2
.
imread
(
sys
.
argv
[
1
])
im_shape
=
np
.
array
(
im
.
shape
[:
2
]).
reshape
(
-
1
)
fetch_map
=
client
.
predict
(
feed
=
{
"image"
:
im
,
"im_shape"
:
im_shape
},
fetch
=
[
"features"
,
"boxes"
],
batch
=
False
)
#add retrieval procedure
det_boxes
=
fetch_map
[
"boxes"
]
searcher
,
id_map
=
init_index
(
index_dir
)
results
=
postprocess
(
fetch_map
,
feature_normalize
,
det_boxes
,
searcher
,
id_map
,
return_k
,
rec_score_thres
,
rec_nms_thresold
)
print
(
results
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录