Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
95ca7446
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
95ca7446
编写于
9月 29, 2019
作者:
W
Wang Guibao
提交者:
GitHub
9月 29, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #83 from wangguibao/ctr_model_serving
Ctr model serving
上级
013a552b
b7c60806
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
166 addition
and
83 deletion
+166
-83
demo-client/src/ctr_prediction.cpp
demo-client/src/ctr_prediction.cpp
+114
-72
demo-serving/op/ctr_prediction_op.cpp
demo-serving/op/ctr_prediction_op.cpp
+43
-1
demo-serving/op/ctr_prediction_op.h
demo-serving/op/ctr_prediction_op.h
+7
-0
predictor/common/constant.h
predictor/common/constant.h
+0
-2
predictor/framework/infer.h
predictor/framework/infer.h
+0
-1
predictor/framework/resource.cpp
predictor/framework/resource.cpp
+0
-1
predictor/src/pdserving.cpp
predictor/src/pdserving.cpp
+2
-3
sdk-cpp/src/endpoint.cpp
sdk-cpp/src/endpoint.cpp
+0
-1
sdk-cpp/src/predictor_sdk.cpp
sdk-cpp/src/predictor_sdk.cpp
+0
-2
未找到文件。
demo-client/src/ctr_prediction.cpp
浏览文件 @
95ca7446
...
...
@@ -30,11 +30,17 @@ using baidu::paddle_serving::predictor::ctr_prediction::Response;
using
baidu
::
paddle_serving
::
predictor
::
ctr_prediction
::
CTRReqInstance
;
using
baidu
::
paddle_serving
::
predictor
::
ctr_prediction
::
CTRResInstance
;
int
batch_size
=
16
;
int
sparse_num
=
26
;
int
dense_num
=
13
;
int
thread_num
=
1
;
int
hash_dim
=
1000001
;
DEFINE_int32
(
batch_size
,
50
,
"Set the batch size of test file."
);
DEFINE_int32
(
concurrency
,
1
,
"Set the max concurrency of requests"
);
DEFINE_int32
(
repeat
,
1
,
"Number of data samples iteration count. Default 1"
);
DEFINE_bool
(
enable_profiling
,
false
,
"Enable profiling. Will supress a lot normal output"
);
std
::
vector
<
float
>
cont_min
=
{
0
,
-
3
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
};
std
::
vector
<
float
>
cont_diff
=
{
20
,
603
,
100
,
50
,
64000
,
500
,
100
,
50
,
500
,
10
,
10
,
10
,
50
};
...
...
@@ -86,7 +92,7 @@ int64_t hash(std::string str) {
int
create_req
(
Request
*
req
,
const
std
::
vector
<
std
::
string
>&
data_list
,
int
data
_index
,
int
start
_index
,
int
batch_size
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
CTRReqInstance
*
ins
=
req
->
add_instances
();
...
...
@@ -94,12 +100,14 @@ int create_req(Request* req,
LOG
(
ERROR
)
<<
"Failed create req instance"
;
return
-
1
;
}
// add data
// avoid out of boundary
int
cur_index
=
data
_index
+
i
;
int
cur_index
=
start
_index
+
i
;
if
(
cur_index
>=
data_list
.
size
())
{
cur_index
=
cur_index
%
data_list
.
size
();
}
std
::
vector
<
std
::
string
>
feature_list
=
split
(
data_list
[
cur_index
],
"
\t
"
);
for
(
int
fi
=
0
;
fi
<
dense_num
;
fi
++
)
{
if
(
feature_list
[
fi
]
==
""
)
{
...
...
@@ -122,10 +130,10 @@ int create_req(Request* req,
}
return
0
;
}
void
print_res
(
const
Request
&
req
,
const
Response
&
res
,
std
::
string
route_tag
,
uint64_t
mid_ms
,
uint64_t
elapse_ms
)
{
if
(
res
.
err_code
()
!=
0
)
{
LOG
(
ERROR
)
<<
"Get result fail :"
<<
res
.
err_msg
();
...
...
@@ -138,72 +146,90 @@ void print_res(const Request& req,
LOG
(
INFO
)
<<
"Receive result "
<<
oss
.
str
();
}
LOG
(
INFO
)
<<
"Succ call predictor[ctr_prediction_service], the tag is: "
<<
route_tag
<<
", mid_ms: "
<<
mid_ms
<<
", elapse_ms: "
<<
elapse_ms
;
<<
route_tag
<<
", elapse_ms: "
<<
elapse_ms
;
}
void
thread_worker
(
PredictorApi
*
api
,
int
thread_id
,
int
batch_size
,
int
server_concurrency
,
const
std
::
vector
<
std
::
string
>&
data_list
)
{
// init
Request
req
;
Response
res
;
api
->
thrd_initialize
();
std
::
string
line
;
int
turns
=
0
;
while
(
turns
<
1000
)
{
timeval
start
;
gettimeofday
(
&
start
,
NULL
);
api
->
thrd_clear
();
Predictor
*
predictor
=
api
->
fetch_predictor
(
"ctr_prediction_service"
);
if
(
!
predictor
)
{
LOG
(
ERROR
)
<<
"Failed fetch predictor: ctr_prediction_service"
;
return
;
}
req
.
Clear
();
res
.
Clear
();
timeval
mid
;
gettimeofday
(
&
mid
,
NULL
);
uint64_t
mid_ms
=
(
mid
.
tv_sec
*
1000
+
mid
.
tv_usec
/
1000
)
-
(
start
.
tv_sec
*
1000
+
start
.
tv_usec
/
1000
);
// wait for other thread
while
(
g_concurrency
.
load
()
>=
server_concurrency
)
{
}
g_concurrency
++
;
LOG
(
INFO
)
<<
"Current concurrency "
<<
g_concurrency
.
load
();
int
data_index
=
turns
*
batch_size
;
if
(
create_req
(
&
req
,
data_list
,
data_index
,
batch_size
)
!=
0
)
{
return
;
}
timeval
start_run
;
gettimeofday
(
&
start_run
,
NULL
);
if
(
predictor
->
inference
(
&
req
,
&
res
)
!=
0
)
{
LOG
(
ERROR
)
<<
"failed call predictor with req:"
<<
req
.
ShortDebugString
();
return
;
}
timeval
end
;
gettimeofday
(
&
end
,
NULL
);
uint64_t
elapse_ms
=
(
end
.
tv_sec
*
1000
+
end
.
tv_usec
/
1000
)
-
(
start_run
.
tv_sec
*
1000
+
start_run
.
tv_usec
/
1000
);
response_time
[
thread_id
].
push_back
(
elapse_ms
);
print_res
(
req
,
res
,
predictor
->
tag
(),
mid_ms
,
elapse_ms
);
g_concurrency
--
;
LOG
(
INFO
)
<<
"Done. Current concurrency "
<<
g_concurrency
.
load
();
turns
++
;
}
//
api
->
thrd_initialize
();
for
(
int
i
=
0
;
i
<
FLAGS_repeat
;
++
i
)
{
int
start_index
=
0
;
while
(
true
)
{
if
(
start_index
>=
data_list
.
size
())
{
break
;
}
api
->
thrd_clear
();
Predictor
*
predictor
=
api
->
fetch_predictor
(
"ctr_prediction_service"
);
if
(
!
predictor
)
{
LOG
(
ERROR
)
<<
"Failed fetch predictor: ctr_prediction_service"
;
return
;
}
req
.
Clear
();
res
.
Clear
();
// wait for other thread
while
(
g_concurrency
.
load
()
>=
FLAGS_concurrency
)
{
}
g_concurrency
++
;
LOG
(
INFO
)
<<
"Current concurrency "
<<
g_concurrency
.
load
();
if
(
create_req
(
&
req
,
data_list
,
start_index
,
FLAGS_batch_size
)
!=
0
)
{
return
;
}
start_index
+=
FLAGS_batch_size
;
LOG
(
INFO
)
<<
"start_index = "
<<
start_index
;
timeval
start
;
gettimeofday
(
&
start
,
NULL
);
if
(
predictor
->
inference
(
&
req
,
&
res
)
!=
0
)
{
LOG
(
ERROR
)
<<
"failed call predictor with req:"
<<
req
.
ShortDebugString
();
return
;
}
g_concurrency
--
;
timeval
end
;
gettimeofday
(
&
end
,
NULL
);
uint64_t
elapse_ms
=
(
end
.
tv_sec
*
1000
+
end
.
tv_usec
/
1000
)
-
(
start
.
tv_sec
*
1000
+
start
.
tv_usec
/
1000
);
response_time
[
thread_id
].
push_back
(
elapse_ms
);
if
(
!
FLAGS_enable_profiling
)
{
print_res
(
req
,
res
,
predictor
->
tag
(),
elapse_ms
);
}
LOG
(
INFO
)
<<
"Done. Current concurrency "
<<
g_concurrency
.
load
();
}
// end while
}
// end for
api
->
thrd_finalize
();
}
void
calc_time
(
int
server_concurrency
,
int
batch_size
)
{
void
calc_time
()
{
std
::
vector
<
int
>
time_list
;
for
(
auto
a
:
response_time
)
{
time_list
.
insert
(
time_list
.
end
(),
a
.
begin
(),
a
.
end
());
}
LOG
(
INFO
)
<<
"Total request : "
<<
(
time_list
.
size
());
LOG
(
INFO
)
<<
"Batch size : "
<<
batch_size
;
LOG
(
INFO
)
<<
"Max concurrency : "
<<
server_concurrency
;
LOG
(
INFO
)
<<
"Batch size : "
<<
FLAGS_batch_size
;
LOG
(
INFO
)
<<
"Max concurrency : "
<<
FLAGS_concurrency
;
LOG
(
INFO
)
<<
"enable_profiling: "
<<
FLAGS_enable_profiling
;
LOG
(
INFO
)
<<
"repeat count: "
<<
FLAGS_repeat
;
float
total_time
=
0
;
float
max_time
=
0
;
float
min_time
=
1000000
;
...
...
@@ -212,21 +238,28 @@ void calc_time(int server_concurrency, int batch_size) {
if
(
time_list
[
i
]
>
max_time
)
max_time
=
time_list
[
i
];
if
(
time_list
[
i
]
<
min_time
)
min_time
=
time_list
[
i
];
}
float
mean_time
=
total_time
/
(
time_list
.
size
());
float
var_time
;
for
(
int
i
=
0
;
i
<
time_list
.
size
();
++
i
)
{
var_time
+=
(
time_list
[
i
]
-
mean_time
)
*
(
time_list
[
i
]
-
mean_time
);
}
var_time
=
var_time
/
time_list
.
size
();
LOG
(
INFO
)
<<
"Total time : "
<<
total_time
/
server_concurrency
<<
" Variance : "
<<
var_time
<<
" Max time : "
<<
max_time
<<
" Min time : "
<<
min_time
;
LOG
(
INFO
)
<<
"Total time : "
<<
total_time
/
FLAGS_concurrency
<<
"ms"
;
LOG
(
INFO
)
<<
"Variance : "
<<
var_time
<<
"ms"
;
LOG
(
INFO
)
<<
"Max time : "
<<
max_time
<<
"ms"
;
LOG
(
INFO
)
<<
"Min time : "
<<
min_time
<<
"ms"
;
float
qps
=
0.0
;
if
(
total_time
>
0
)
qps
=
(
time_list
.
size
()
*
1000
)
/
(
total_time
/
server_concurrency
);
if
(
total_time
>
0
)
{
qps
=
(
time_list
.
size
()
*
1000
)
/
(
total_time
/
FLAGS_concurrency
);
}
LOG
(
INFO
)
<<
"QPS: "
<<
qps
<<
"/s"
;
LOG
(
INFO
)
<<
"Latency statistics: "
;
sort
(
time_list
.
begin
(),
time_list
.
end
());
int
percent_pos_50
=
time_list
.
size
()
*
0.5
;
int
percent_pos_80
=
time_list
.
size
()
*
0.8
;
int
percent_pos_90
=
time_list
.
size
()
*
0.9
;
...
...
@@ -244,11 +277,12 @@ void calc_time(int server_concurrency, int batch_size) {
}
}
int
main
(
int
argc
,
char
**
argv
)
{
google
::
ParseCommandLineFlags
(
&
argc
,
&
argv
,
true
);
// initialize
PredictorApi
api
;
response_time
.
resize
(
thread_num
);
int
server_concurrency
=
thread_num
;
// log set
response_time
.
resize
(
FLAGS_concurrency
);
#ifdef BCLOUD
logging
::
LoggingSettings
settings
;
settings
.
logging_dest
=
logging
::
LOG_TO_FILE
;
...
...
@@ -282,32 +316,40 @@ int main(int argc, char** argv) {
LOG
(
ERROR
)
<<
"Failed create predictors api!"
;
return
-
1
;
}
LOG
(
INFO
)
<<
"data sample file: "
<<
data_filename
;
if
(
FLAGS_enable_profiling
)
{
LOG
(
INFO
)
<<
"In profiling mode, lot of normal output will be supressed. "
<<
"Use --enable_profiling=false to turn off this mode"
;
}
// read data
std
::
ifstream
data_file
(
data_filename
);
if
(
!
data_file
)
{
std
::
cout
<<
"read file error
\n
"
<<
std
::
endl
;
return
-
1
;
}
std
::
vector
<
std
::
string
>
data_list
;
std
::
string
line
;
while
(
getline
(
data_file
,
line
))
{
data_list
.
push_back
(
line
);
}
// create threads
std
::
vector
<
std
::
thread
*>
thread_pool
;
for
(
int
i
=
0
;
i
<
server_concurrency
;
++
i
)
{
thread_pool
.
push_back
(
new
std
::
thread
(
thread_worker
,
&
api
,
i
,
batch_size
,
server_concurrency
,
std
::
ref
(
data_list
)));
for
(
int
i
=
0
;
i
<
FLAGS_concurrency
;
++
i
)
{
thread_pool
.
push_back
(
new
std
::
thread
(
thread_worker
,
&
api
,
i
,
data_list
));
}
for
(
int
i
=
0
;
i
<
server_concurrency
;
++
i
)
{
for
(
int
i
=
0
;
i
<
FLAGS_concurrency
;
++
i
)
{
thread_pool
[
i
]
->
join
();
delete
thread_pool
[
i
];
}
calc_time
(
server_concurrency
,
batch_size
);
calc_time
();
api
.
destroy
();
return
0
;
}
demo-serving/op/ctr_prediction_op.cpp
浏览文件 @
95ca7446
...
...
@@ -23,6 +23,9 @@
#include "predictor/framework/kv_manager.h"
#include "predictor/framework/memory.h"
// Flag where enable profiling mode
DECLARE_bool
(
enable_ctr_profiling
);
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
...
...
@@ -46,6 +49,11 @@ const int CTR_PREDICTION_DENSE_SLOT_ID = 26;
const
int
CTR_PREDICTION_DENSE_DIM
=
13
;
const
int
CTR_PREDICTION_EMBEDDING_SIZE
=
10
;
bthread
::
Mutex
CTRPredictionOp
::
mutex_
;
int64_t
CTRPredictionOp
::
cube_time_us_
=
0
;
int32_t
CTRPredictionOp
::
cube_req_num_
=
0
;
int32_t
CTRPredictionOp
::
cube_req_key_num_
=
0
;
void
fill_response_with_message
(
Response
*
response
,
int
err_code
,
std
::
string
err_msg
)
{
...
...
@@ -135,7 +143,41 @@ int CTRPredictionOp::inference() {
return
0
;
}
else
if
(
kvinfo
->
sparse_param_service_type
==
configure
::
EngineDesc
::
REMOTE
)
{
int
ret
=
cube
->
seek
(
table_name
,
keys
,
&
values
);
struct
timeval
start
;
struct
timeval
end
;
int
ret
;
gettimeofday
(
&
start
,
NULL
);
ret
=
cube
->
seek
(
table_name
,
keys
,
&
values
);
gettimeofday
(
&
end
,
NULL
);
uint64_t
usec
=
end
.
tv_sec
*
1e6
+
end
.
tv_usec
-
start
.
tv_sec
*
1e6
-
start
.
tv_usec
;
// Statistics
mutex_
.
lock
();
cube_time_us_
+=
usec
;
++
cube_req_num_
;
cube_req_key_num_
+=
keys
.
size
();
if
(
cube_req_num_
>=
1000
)
{
LOG
(
INFO
)
<<
"Cube request count: "
<<
cube_req_num_
;
LOG
(
INFO
)
<<
"Cube request key count: "
<<
cube_req_key_num_
;
LOG
(
INFO
)
<<
"Cube request total time: "
<<
cube_time_us_
<<
"us"
;
LOG
(
INFO
)
<<
"Average "
<<
static_cast
<
float
>
(
cube_time_us_
)
/
cube_req_num_
<<
"us/req"
;
LOG
(
INFO
)
<<
"Average "
<<
static_cast
<
float
>
(
cube_time_us_
)
/
cube_req_key_num_
<<
"us/key"
;
cube_time_us_
=
0
;
cube_req_num_
=
0
;
cube_req_key_num_
=
0
;
}
mutex_
.
unlock
();
// Statistics end
if
(
ret
!=
0
)
{
fill_response_with_message
(
res
,
-
1
,
"Query cube for embeddings error"
);
LOG
(
ERROR
)
<<
"Query cube for embeddings error"
;
...
...
demo-serving/op/ctr_prediction_op.h
浏览文件 @
95ca7446
...
...
@@ -55,6 +55,7 @@ static const char* CTR_PREDICTION_MODEL_NAME = "ctr_prediction";
* and modifications we made
*
*/
class
CTRPredictionOp
:
public
baidu
::
paddle_serving
::
predictor
::
OpWithChannel
<
baidu
::
paddle_serving
::
predictor
::
ctr_prediction
::
Response
>
{
...
...
@@ -64,6 +65,12 @@ class CTRPredictionOp
DECLARE_OP
(
CTRPredictionOp
);
int
inference
();
private:
static
bthread
::
Mutex
mutex_
;
static
int64_t
cube_time_us_
;
static
int32_t
cube_req_num_
;
static
int32_t
cube_req_key_num_
;
};
}
// namespace serving
...
...
predictor/common/constant.h
浏览文件 @
95ca7446
...
...
@@ -40,8 +40,6 @@ DECLARE_int32(reload_interval_s);
DECLARE_bool
(
enable_model_toolkit
);
DECLARE_string
(
enable_protocol_list
);
DECLARE_bool
(
enable_cube
);
DECLARE_string
(
cube_config_path
);
DECLARE_string
(
cube_config_file
);
// STATIC Variables
extern
const
char
*
START_OP_NAME
;
...
...
predictor/framework/infer.h
浏览文件 @
95ca7446
...
...
@@ -632,7 +632,6 @@ class VersionedInferEngine : public InferEngine {
LOG
(
ERROR
)
<<
"Failed thrd clear version engine: "
<<
iter
->
first
;
return
-
1
;
}
LOG
(
INFO
)
<<
"Succ thrd clear version engine: "
<<
iter
->
first
;
}
return
0
;
}
...
...
predictor/framework/resource.cpp
浏览文件 @
95ca7446
...
...
@@ -208,7 +208,6 @@ int Resource::thread_clear() {
return
-
1
;
}
LOG
(
INFO
)
<<
bthread_self
()
<<
"Resource::thread_clear success"
;
// ...
return
0
;
}
...
...
predictor/src/pdserving.cpp
浏览文件 @
95ca7446
...
...
@@ -51,8 +51,6 @@ using baidu::paddle_serving::predictor::FLAGS_port;
using
baidu
::
paddle_serving
::
configure
::
InferServiceConf
;
using
baidu
::
paddle_serving
::
configure
::
read_proto_conf
;
DECLARE_bool
(
logtostderr
);
void
print_revision
(
std
::
ostream
&
os
,
void
*
)
{
#if defined(PDSERVING_VERSION)
os
<<
PDSERVING_VERSION
;
...
...
@@ -217,7 +215,8 @@ int main(int argc, char** argv) {
}
LOG
(
INFO
)
<<
"Succ initialize cube"
;
FLAGS_logtostderr
=
false
;
// FATAL messages are output to stderr
FLAGS_stderrthreshold
=
3
;
if
(
ServerManager
::
instance
().
start_and_wait
()
!=
0
)
{
LOG
(
ERROR
)
<<
"Failed start server and wait!"
;
...
...
sdk-cpp/src/endpoint.cpp
浏览文件 @
95ca7446
...
...
@@ -64,7 +64,6 @@ int Endpoint::thrd_clear() {
return
-
1
;
}
}
LOG
(
INFO
)
<<
"Succ thrd clear all vars: "
<<
var_size
;
return
0
;
}
...
...
sdk-cpp/src/predictor_sdk.cpp
浏览文件 @
95ca7446
...
...
@@ -94,8 +94,6 @@ int PredictorApi::thrd_clear() {
LOG
(
ERROR
)
<<
"Failed thrd clear endpoint:"
<<
it
->
first
;
return
-
1
;
}
LOG
(
INFO
)
<<
"Succ thrd clear endpoint:"
<<
it
->
first
;
}
return
0
;
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录