提交 9251f9b6 编写于 作者: J Jiawei Wang 提交者: GitHub

Merge pull request #3 from PaddlePaddle/develop

Sync with Origin Repo
......@@ -154,10 +154,87 @@ curl -H "Content-Type:application/json" -X POST -d '{"url": "https://paddle-serv
{"label":"daisy","prob":0.9341403245925903}
```
<h3 align="center">More Demos</h4>
| Key | Value |
| :----------------- | :----------------------------------------------------------- |
| Model Name | Bert-Base-Baike |
| URL | [https://paddle-serving.bj.bcebos.com/bert_example/bert_seq128.tar.gz](https://paddle-serving.bj.bcebos.com/bert_example%2Fbert_seq128.tar.gz) |
| Client/Server Code | https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/bert |
| Description | Get semantic representation from a Chinese Sentence |
| Key | Value |
| :----------------- | :----------------------------------------------------------- |
| Model Name | Resnet50-Imagenet |
| URL | [https://paddle-serving.bj.bcebos.com/imagenet-example/ResNet50_vd.tar.gz](https://paddle-serving.bj.bcebos.com/imagenet-example%2FResNet50_vd.tar.gz) |
| Client/Server Code | https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/imagenet |
| Description | Get image semantic representation from an image |
| Key | Value |
| :----------------- | :----------------------------------------------------------- |
| Model Name | Resnet101-Imagenet |
| URL | https://paddle-serving.bj.bcebos.com/imagenet-example/ResNet101_vd.tar.gz |
| Client/Server Code | https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/imagenet |
| Description | Get image semantic representation from an image |
| Key | Value |
| :----------------- | :----------------------------------------------------------- |
| Model Name | CNN-IMDB |
| URL | https://paddle-serving.bj.bcebos.com/imdb-demo/imdb_model.tar.gz |
| Client/Server Code | https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/imdb |
| Description | Get category probability from an English Sentence |
| Key | Value |
| :----------------- | :----------------------------------------------------------- |
| Model Name | LSTM-IMDB |
| URL | https://paddle-serving.bj.bcebos.com/imdb-demo/imdb_model.tar.gz |
| Client/Server Code | https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/imdb |
| Description | Get category probability from an English Sentence |
| Key | Value |
| :----------------- | :----------------------------------------------------------- |
| Model Name | BOW-IMDB |
| URL | https://paddle-serving.bj.bcebos.com/imdb-demo/imdb_model.tar.gz |
| Client/Server Code | https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/imdb |
| Description | Get category probability from an English Sentence |
| Key | Value |
| :----------------- | :----------------------------------------------------------- |
| Model Name | Jieba-LAC |
| URL | https://paddle-serving.bj.bcebos.com/lac/lac_model.tar.gz |
| Client/Server Code | https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/lac |
| Description | Get word segmentation from a Chinese Sentence |
| Key | Value |
| :----------------- | :----------------------------------------------------------- |
| Model Name | DNN-CTR |
| URL | None(Get model by [local_train.py](./python/examples/criteo_ctr/local_train.py)) |
| Client/Server Code | https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/criteo_ctr |
| Description | Get click probability from a feature vector of item |
| Key | Value |
| :----------------- | :----------------------------------------------------------- |
| Model Name | DNN-CTR(with cube) |
| URL | None(Get model by [local_train.py](python/examples/criteo_ctr_with_cube/local_train.py)) |
| Client/Server Code | https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/criteo_ctr_with_cube |
| Description | Get click probability from a feature vector of item |
<h2 align="center">Document</h2>
### New to Paddle Serving
......
......@@ -147,7 +147,7 @@ tar -xzf uci_housing.tar.gz
Running on the Server side (inside the container):
```bash
python -m paddle_serving_server_gpu.serve --model uci_housing_model --thread 10 --port 9292 --name uci
python -m paddle_serving_server_gpu.serve --model uci_housing_model --thread 10 --port 9292 --name uci --gpu_ids 0
```
Running on the Client side (inside or outside the container):
......@@ -161,7 +161,7 @@ tar -xzf uci_housing.tar.gz
Running on the Server side (inside the container):
```bash
python -m paddle_serving_server_gpu.serve --model uci_housing_model --thread 10 --port 9292
python -m paddle_serving_server_gpu.serve --model uci_housing_model --thread 10 --port 9292 --gpu_ids 0
```
Running following Python code on the Client side (inside or outside the container, The `paddle-serving-client` package needs to be installed):
......
......@@ -145,7 +145,7 @@ tar -xzf uci_housing.tar.gz
在Server端(容器内)运行:
```bash
python -m paddle_serving_server_gpu.serve --model uci_housing_model --thread 10 --port 9292 --name uci
python -m paddle_serving_server_gpu.serve --model uci_housing_model --thread 10 --port 9292 --name uci --gpu_ids 0
```
在Client端(容器内或容器外)运行:
......@@ -159,7 +159,7 @@ tar -xzf uci_housing.tar.gz
在Server端(容器内)运行:
```bash
python -m paddle_serving_server_gpu.serve --model uci_housing_model --thread 10 --port 9292
python -m paddle_serving_server_gpu.serve --model uci_housing_model --thread 10 --port 9292 --gpu_ids 0
```
在Client端(容器内或容器外,需要安装`paddle-serving-client`包)运行下面Python代码:
......
......@@ -21,6 +21,10 @@ import time
import criteo_reader as criteo
from paddle_serving_client.metric import auc
import sys
py_version = sys.version_info[0]
client = Client()
client.load_client_config(sys.argv[1])
client.connect(["127.0.0.1:9292"])
......@@ -39,7 +43,10 @@ label_list = []
prob_list = []
start = time.time()
for ei in range(1000):
data = reader().next()
if py_version == 2:
data = reader().next()
else:
data = reader().__next__()
feed_dict = {}
for i in range(1, 27):
feed_dict["sparse_{}".format(i - 1)] = data[0][i]
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import os
import sys
from paddle_serving_server_gpu import OpMaker
from paddle_serving_server_gpu import OpSeqMaker
from paddle_serving_server_gpu import Server
op_maker = OpMaker()
read_op = op_maker.create('general_reader')
general_dist_kv_infer_op = op_maker.create('general_dist_kv_infer')
response_op = op_maker.create('general_response')
op_seq_maker = OpSeqMaker()
op_seq_maker.add_op(read_op)
op_seq_maker.add_op(general_dist_kv_infer_op)
op_seq_maker.add_op(response_op)
server = Server()
server.set_op_sequence(op_seq_maker.get_op_sequence())
server.set_num_threads(4)
server.load_model_config(sys.argv[1])
server.prepare_server(workdir="work_dir1", port=9292, device="cpu")
server.run_server()
......@@ -17,10 +17,16 @@ import base64
import json
import time
import os
import sys
py_version = sys.version_info[0]
def predict(image_path, server):
image = base64.b64encode(open(image_path).read())
if py_version == 2:
image = base64.b64encode(open(image_path).read())
else:
image = base64.b64encode(open(image_path, "rb").read()).decode("utf-8")
req = json.dumps({"image": image, "fetch": ["score"]})
r = requests.post(
server, data=req, headers={"Content-Type": "application/json"})
......@@ -28,18 +34,8 @@ def predict(image_path, server):
return r
def batch_predict(image_path, server):
image = base64.b64encode(open(image_path).read())
req = json.dumps({"image": [image, image], "fetch": ["score"]})
r = requests.post(
server, data=req, headers={"Content-Type": "application/json"})
print(r.json()["result"][1]["score"][0])
return r
if __name__ == "__main__":
server = "http://127.0.0.1:9393/image/prediction"
#image_path = "./data/n01440764_10026.JPEG"
image_list = os.listdir("./image_data/n01440764/")
start = time.time()
for img in image_list:
......
......@@ -19,16 +19,15 @@ import time
client = Client()
client.load_client_config(sys.argv[1])
client.connect(["127.0.0.1:9295"])
client.connect(["127.0.0.1:9393"])
reader = ImageReader()
start = time.time()
for i in range(1000):
with open("./data/n01440764_10026.JPEG") as f:
with open("./data/n01440764_10026.JPEG", "rb") as f:
img = f.read()
img = reader.process_image(img).reshape(-1)
fetch_map = client.predict(feed={"image": img}, fetch=["score"])
print(i)
end = time.time()
print(end - start)
......
......@@ -19,15 +19,23 @@ import paddle
import re
import paddle.fluid.incubate.data_generator as dg
py_version = sys.version_info[0]
class IMDBDataset(dg.MultiSlotDataGenerator):
def load_resource(self, dictfile):
self._vocab = {}
wid = 0
with open(dictfile) as f:
for line in f:
self._vocab[line.strip()] = wid
wid += 1
if py_version == 2:
with open(dictfile) as f:
for line in f:
self._vocab[line.strip()] = wid
wid += 1
else:
with open(dictfile, encoding="utf-8") as f:
for line in f:
self._vocab[line.strip()] = wid
wid += 1
self._unk_id = len(self._vocab)
self._pattern = re.compile(r'(;|,|\.|\?|!|\s|\(|\))')
self.return_value = ("words", [1, 2, 3, 4, 5, 6]), ("label", [0])
......
......@@ -11,5 +11,5 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auc import auc
from acc import acc
from .auc import auc
from .acc import acc
......@@ -55,6 +55,7 @@ class OpMaker(object):
"general_text_reader": "GeneralTextReaderOp",
"general_text_response": "GeneralTextResponseOp",
"general_single_kv": "GeneralSingleKVOp",
"general_dist_kv_infer": "GeneralDistKVInferOp",
"general_dist_kv": "GeneralDistKVOp"
}
......@@ -104,6 +105,7 @@ class Server(object):
self.infer_service_fn = "infer_service.prototxt"
self.model_toolkit_fn = "model_toolkit.prototxt"
self.general_model_config_fn = "general_model.prototxt"
self.cube_config_fn = "cube.conf"
self.workdir = ""
self.max_concurrency = 0
self.num_threads = 4
......@@ -184,6 +186,11 @@ class Server(object):
"w") as fout:
fout.write(str(self.model_conf))
self.resource_conf = server_sdk.ResourceConf()
for workflow in self.workflow_conf.workflows:
for node in workflow.nodes:
if "dist_kv" in node.name:
self.resource_conf.cube_config_path = workdir
self.resource_conf.cube_config_file = self.cube_config_fn
self.resource_conf.model_toolkit_path = workdir
self.resource_conf.model_toolkit_file = self.model_toolkit_fn
self.resource_conf.general_model_path = workdir
......
......@@ -71,7 +71,7 @@ def start_multi_card(args): # pylint: disable=doc-string-missing
else:
gpus = args.gpu_ids.split(",")
if len(gpus) <= 0:
start_gpu_card_model(-1, args)
start_gpu_card_model(-1, 0, args)
else:
gpu_processes = []
for i, gpu_id in enumerate(gpus):
......
......@@ -18,6 +18,7 @@ from __future__ import print_function
import platform
import os
import sys
from setuptools import setup, Distribution, Extension
from setuptools import find_packages
......@@ -25,6 +26,7 @@ from setuptools import setup
from paddle_serving_client.version import serving_client_version
from pkg_resources import DistributionNotFound, get_distribution
py_version = sys.version_info[0]
def python_version():
return [int(v) for v in platform.python_version().split(".")]
......@@ -37,8 +39,9 @@ def find_package(pkgname):
return False
def copy_lib():
lib_list = ['libpython2.7.so.1.0', 'libssl.so.10', 'libcrypto.so.10'] if py_version == 2 else ['libpython3.6m.so.1.0', 'libssl.so.10', 'libcrypto.so.10']
os.popen('mkdir -p paddle_serving_client/lib')
for lib in ['libpython2.7.so.1.0', 'libssl.so.10', 'libcrypto.so.10']:
for lib in lib_list:
r = os.popen('whereis {}'.format(lib))
text = r.read()
os.popen('cp {} ./paddle_serving_client/lib'.format(text.strip().split(' ')[1]))
......
......@@ -211,12 +211,11 @@ function python_run_criteo_ctr_with_cube() {
cp ../../../build-server-$TYPE/output/bin/cube* ./cube/
mkdir -p $PYTHONROOT/lib/python2.7/site-packages/paddle_serving_server/serving-cpu-avx-openblas-0.1.3/
yes | cp ../../../build-server-$TYPE/output/demo/serving/bin/serving $PYTHONROOT/lib/python2.7/site-packages/paddle_serving_server/serving-cpu-avx-openblas-0.1.3/
sh cube_prepare.sh &
check_cmd "mkdir work_dir1 && cp cube/conf/cube.conf ./work_dir1/"
python test_server.py ctr_serving_model_kv &
check_cmd "python test_client.py ctr_client_conf/serving_client_conf.prototxt ./ut_data >score"
tail -n 2 score
tail -n 2 score | awk 'NR==1'
AUC=$(tail -n 2 score | awk 'NR==1')
VAR2="0.67" #TODO: temporarily relax the threshold to 0.67
RES=$( echo "$AUC>$VAR2" | bc )
......@@ -229,6 +228,30 @@ function python_run_criteo_ctr_with_cube() {
ps -ef | grep "cube" | grep -v grep | awk '{print $2}' | xargs kill
;;
GPU)
check_cmd "wget https://paddle-serving.bj.bcebos.com/unittest/ctr_cube_unittest.tar.gz"
check_cmd "tar xf ctr_cube_unittest.tar.gz"
check_cmd "mv models/ctr_client_conf ./"
check_cmd "mv models/ctr_serving_model_kv ./"
check_cmd "mv models/data ./cube/"
check_cmd "mv models/ut_data ./"
cp ../../../build-server-$TYPE/output/bin/cube* ./cube/
mkdir -p $PYTHONROOT/lib/python2.7/site-packages/paddle_serving_server_gpu/serving-gpu-0.1.3/
yes | cp ../../../build-server-$TYPE/output/demo/serving/bin/serving $PYTHONROOT/lib/python2.7/site-packages/paddle_serving_server_gpu/serving-gpu-0.1.3/
sh cube_prepare.sh &
check_cmd "mkdir work_dir1 && cp cube/conf/cube.conf ./work_dir1/"
python test_server_gpu.py ctr_serving_model_kv &
check_cmd "python test_client.py ctr_client_conf/serving_client_conf.prototxt ./ut_data >score"
tail -n 2 score | awk 'NR==1'
AUC=$(tail -n 2 score | awk 'NR==1')
VAR2="0.67" #TODO: temporarily relax the threshold to 0.67
RES=$( echo "$AUC>$VAR2" | bc )
if [[ $RES -eq 0 ]]; then
echo "error with criteo_ctr_with_cube inference auc test, auc should > 0.70"
exit 1
fi
echo "criteo_ctr_with_cube inference auc test success"
ps -ef | grep "paddle_serving_server" | grep -v grep | awk '{print $2}' | xargs kill
ps -ef | grep "cube" | grep -v grep | awk '{print $2}' | xargs kill
;;
*)
echo "error type"
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册