提交 91696144 编写于 作者: M MRXLT

Merge remote-tracking branch 'upstream/develop' into ce-script

# Blazeface
## Get Model
```
python -m paddle_serving_app.package --get_model blazeface
tar -xzvf blazeface.tar.gz
```
## RPC Service
### Start Service
```
python -m paddle_serving_server.serve --model serving_server --port 9494
```
### Client Prediction
```
python test_client.py serving_client/serving_client_conf.prototxt test.jpg
```
the result is in `output` folder, including a json file and image file with bounding boxes.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_client import Client
from paddle_serving_app.reader import *
import sys
import numpy as np
preprocess = Sequential([
File2Image(),
Normalize([104, 117, 123], [127.502231, 127.502231, 127.502231], False)
])
postprocess = BlazeFacePostprocess("label_list.txt", "output")
client = Client()
client.load_client_config(sys.argv[1])
client.connect(['127.0.0.1:9494'])
im_0 = preprocess(sys.argv[2])
tmp = Transpose((2, 0, 1))
im = tmp(im_0)
fetch_map = client.predict(
feed={"image": im}, fetch=["detection_output_0.tmp_0"])
fetch_map["image"] = sys.argv[2]
fetch_map["im_shape"] = im_0.shape
postprocess(fetch_map)
......@@ -24,7 +24,8 @@ class ServingModels(object):
"SentimentAnalysis"] = ["senta_bilstm", "senta_bow", "senta_cnn"]
self.model_dict["SemanticRepresentation"] = ["ernie"]
self.model_dict["ChineseWordSegmentation"] = ["lac"]
self.model_dict["ObjectDetection"] = ["faster_rcnn", "yolov4"]
self.model_dict[
"ObjectDetection"] = ["faster_rcnn", "yolov4", "blazeface"]
self.model_dict["ImageSegmentation"] = [
"unet", "deeplabv3", "deeplabv3+cityscapes"
]
......
......@@ -29,6 +29,7 @@ def normalize(img, mean, std, channel_first):
else:
img_mean = np.array(mean).reshape((1, 1, 3))
img_std = np.array(std).reshape((1, 1, 3))
img = np.array(img).astype("float32")
img -= img_mean
img /= img_std
return img
......
......@@ -440,6 +440,30 @@ class RCNNPostprocess(object):
self.label_file, self.output_dir)
class BlazeFacePostprocess(RCNNPostprocess):
def clip_bbox(self, bbox, im_size=None):
h = 1. if im_size is None else im_size[0]
w = 1. if im_size is None else im_size[1]
xmin = max(min(bbox[0], w), 0.)
ymin = max(min(bbox[1], h), 0.)
xmax = max(min(bbox[2], w), 0.)
ymax = max(min(bbox[3], h), 0.)
return xmin, ymin, xmax, ymax
def _get_bbox_result(self, fetch_map, fetch_name, clsid2catid):
result = {}
is_bbox_normalized = True #for blaze face, set true here
output = fetch_map[fetch_name]
lod = [fetch_map[fetch_name + '.lod']]
lengths = self._offset_to_lengths(lod)
np_data = np.array(output)
result['bbox'] = (np_data, lengths)
result['im_id'] = np.array([[0]])
result["im_shape"] = np.array(fetch_map["im_shape"]).astype(np.int32)
bbox_results = self._bbox2out([result], clsid2catid, is_bbox_normalized)
return bbox_results
class Sequential(object):
"""
Args:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册