提交 8f85df46 编写于 作者: W wangjiawei04

fix criteo ctr with cube

上级 6ab45c69
......@@ -186,9 +186,9 @@ int GeneralDistKVInferOp::inference() {
if (values.size() != keys.size() || values[0].buff.size() == 0) {
LOG(ERROR) << "cube value return null";
}
// size_t EMBEDDING_SIZE = values[0].buff.size() / sizeof(float);
size_t EMBEDDING_SIZE = values[0].buff.size() / sizeof(float);
// size_t EMBEDDING_SIZE = (values[0].buff.size() - 10) / sizeof(float);
size_t EMBEDDING_SIZE = 9;
//size_t EMBEDDING_SIZE = 9;
TensorVector sparse_out;
sparse_out.resize(sparse_count);
TensorVector dense_out;
......@@ -241,7 +241,7 @@ int GeneralDistKVInferOp::inference() {
// The data generated by pslib has 10 bytes of information to be filtered
// out
memcpy(data_ptr, cur_val->buff.data() + 10, cur_val->buff.size() - 10);
memcpy(data_ptr, cur_val->buff.data(), cur_val->buff.size() );
// VLOG(3) << keys[cube_val_idx] << ":" << data_ptr[0] << ", " <<
// data_ptr[1] << ", " <<data_ptr[2] << ", " <<data_ptr[3] << ", "
// <<data_ptr[4] << ", " <<data_ptr[5] << ", " <<data_ptr[6] << ", "
......
......@@ -35,7 +35,7 @@ reader = dataset.infer_reader(test_filelists, batch, buf_size)
label_list = []
prob_list = []
start = time.time()
for ei in range(1):
for ei in range(100):
if py_version == 2:
data = reader().next()
else:
......@@ -46,16 +46,12 @@ for ei in range(1):
for i in range(1, 27):
feed_dict["embedding_{}.tmp_0".format(i - 1)] = np.array(data[0][i]).reshape(len(data[0][i]))
feed_dict["embedding_{}.tmp_0.lod".format(i - 1)] = [0, len(data[0][i])]
for key in feed_dict.keys():
if "lod" not in key:
print("key: {}, shape: {}".format(key, feed_dict[key].shape))
fetch_map = client.predict(feed=feed_dict, fetch=["prob"],batch=True)
print(fetch_map)
prob_list.append(fetch_map['prob'][0][1])
label_list.append(data[0][-1][0])
print(auc(label_list, prob_list))
end = time.time()
print(end - start)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册