提交 8f254ed9 编写于 作者: H HexToString

fix code style

上级 612431fe
...@@ -47,7 +47,7 @@ int GeneralInferOp::inference() { ...@@ -47,7 +47,7 @@ int GeneralInferOp::inference() {
const std::string pre_name = pre_node_names[0]; const std::string pre_name = pre_node_names[0];
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name); const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
if(!input_blob){ if (!input_blob) {
LOG(ERROR) << "input_blob is nullptr,error"; LOG(ERROR) << "input_blob is nullptr,error";
return -1; return -1;
} }
...@@ -55,7 +55,7 @@ int GeneralInferOp::inference() { ...@@ -55,7 +55,7 @@ int GeneralInferOp::inference() {
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name; VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
GeneralBlob *output_blob = mutable_data<GeneralBlob>(); GeneralBlob *output_blob = mutable_data<GeneralBlob>();
if(!output_blob){ if (!output_blob) {
LOG(ERROR) << "output_blob is nullptr,error"; LOG(ERROR) << "output_blob is nullptr,error";
return -1; return -1;
} }
......
...@@ -32,7 +32,7 @@ using baidu::paddle_serving::predictor::general_model::Tensor; ...@@ -32,7 +32,7 @@ using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Request; using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FeedInst; using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig; using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
enum ProtoDataType { P_INT64,P_FLOAT32,P_INT32 }; enum ProtoDataType { P_INT64, P_FLOAT32, P_INT32 };
int conf_check(const Request *req, int conf_check(const Request *req,
const std::shared_ptr<PaddleGeneralModelConfig> &model_config) { const std::shared_ptr<PaddleGeneralModelConfig> &model_config) {
int var_num = req->insts(0).tensor_array_size(); int var_num = req->insts(0).tensor_array_size();
...@@ -79,13 +79,9 @@ int GeneralReaderOp::inference() { ...@@ -79,13 +79,9 @@ int GeneralReaderOp::inference() {
std::vector<int64_t> capacity; std::vector<int64_t> capacity;
GeneralBlob *res = mutable_data<GeneralBlob>(); GeneralBlob *res = mutable_data<GeneralBlob>();
TensorVector *out = &res->tensor_vector; TensorVector *out = &(res->tensor_vector);
if(!res){
LOG(ERROR) << "res is nullptr,error";
return -1;
}
res->SetLogId(log_id); res->SetLogId(log_id);
if (!res) { if (!res) {
LOG(ERROR) << "(logid=" << log_id LOG(ERROR) << "(logid=" << log_id
<< ") Failed get op tls reader object output"; << ") Failed get op tls reader object output";
...@@ -94,9 +90,8 @@ int GeneralReaderOp::inference() { ...@@ -94,9 +90,8 @@ int GeneralReaderOp::inference() {
Timer timeline; Timer timeline;
int64_t start = timeline.TimeStampUS(); int64_t start = timeline.TimeStampUS();
int var_num = req->insts(0).tensor_array_size(); int var_num = req->insts(0).tensor_array_size();
VLOG(2) << "(logid=" << log_id << ") var num: " << var_num;
VLOG(2) << "(logid=" << log_id VLOG(2) << "(logid=" << log_id << ") var num: " << var_num
<< ") start to call load general model_conf op"; << ") start to call load general model_conf op";
baidu::paddle_serving::predictor::Resource &resource = baidu::paddle_serving::predictor::Resource &resource =
...@@ -106,8 +101,6 @@ int GeneralReaderOp::inference() { ...@@ -106,8 +101,6 @@ int GeneralReaderOp::inference() {
std::shared_ptr<PaddleGeneralModelConfig> model_config = std::shared_ptr<PaddleGeneralModelConfig> model_config =
resource.get_general_model_config(); resource.get_general_model_config();
VLOG(2) << "(logid=" << log_id << ") print general model config done.";
// TODO(guru4elephant): how to do conditional check? // TODO(guru4elephant): how to do conditional check?
/* /*
int ret = conf_check(req, model_config); int ret = conf_check(req, model_config);
...@@ -170,11 +163,13 @@ int GeneralReaderOp::inference() { ...@@ -170,11 +163,13 @@ int GeneralReaderOp::inference() {
out->push_back(lod_tensor); out->push_back(lod_tensor);
} }
// specify the memory needed for output tensor_vector // specify the memory needed for output tensor_vector
int tensor_size = 0;
int data_len = 0;
for (int i = 0; i < var_num; ++i) { for (int i = 0; i < var_num; ++i) {
if (out->at(i).lod.size() == 1) { if (out->at(i).lod.size() == 1) {
int tensor_size = 0; tensor_size = 0;
const Tensor &tensor = req->insts(0).tensor_array(i); const Tensor &tensor = req->insts(0).tensor_array(i);
int data_len = 0; data_len = 0;
if (tensor.int64_data_size() > 0) { if (tensor.int64_data_size() > 0) {
data_len = tensor.int64_data_size(); data_len = tensor.int64_data_size();
} else if (tensor.float_data_size() > 0) { } else if (tensor.float_data_size() > 0) {
...@@ -207,14 +202,16 @@ int GeneralReaderOp::inference() { ...@@ -207,14 +202,16 @@ int GeneralReaderOp::inference() {
} }
// fill the data into output general_blob // fill the data into output general_blob
int offset = 0;
int elem_num = 0;
for (int i = 0; i < var_num; ++i) { for (int i = 0; i < var_num; ++i) {
if (elem_type[i] == P_INT64) { if (elem_type[i] == P_INT64) {
int64_t *dst_ptr = static_cast<int64_t *>(out->at(i).data.data()); int64_t *dst_ptr = static_cast<int64_t *>(out->at(i).data.data());
VLOG(2) << "(logid=" << log_id << ") first element data in var[" << i VLOG(2) << "(logid=" << log_id << ") first element data in var[" << i
<< "] is " << req->insts(0).tensor_array(i).int64_data(0); << "] is " << req->insts(0).tensor_array(i).int64_data(0);
int offset = 0; offset = 0;
int elem_num = req->insts(0).tensor_array(i).int64_data_size(); elem_num = req->insts(0).tensor_array(i).int64_data_size();
if(!dst_ptr){ if (!dst_ptr) {
LOG(ERROR) << "dst_ptr is nullptr"; LOG(ERROR) << "dst_ptr is nullptr";
return -1; return -1;
} }
...@@ -225,9 +222,9 @@ int GeneralReaderOp::inference() { ...@@ -225,9 +222,9 @@ int GeneralReaderOp::inference() {
float *dst_ptr = static_cast<float *>(out->at(i).data.data()); float *dst_ptr = static_cast<float *>(out->at(i).data.data());
VLOG(2) << "(logid=" << log_id << ") first element data in var[" << i VLOG(2) << "(logid=" << log_id << ") first element data in var[" << i
<< "] is " << req->insts(0).tensor_array(i).float_data(0); << "] is " << req->insts(0).tensor_array(i).float_data(0);
int offset = 0; offset = 0;
int elem_num = req->insts(0).tensor_array(i).float_data_size(); elem_num = req->insts(0).tensor_array(i).float_data_size();
if(!dst_ptr){ if (!dst_ptr) {
LOG(ERROR) << "dst_ptr is nullptr"; LOG(ERROR) << "dst_ptr is nullptr";
return -1; return -1;
} }
...@@ -238,9 +235,9 @@ int GeneralReaderOp::inference() { ...@@ -238,9 +235,9 @@ int GeneralReaderOp::inference() {
int32_t *dst_ptr = static_cast<int32_t *>(out->at(i).data.data()); int32_t *dst_ptr = static_cast<int32_t *>(out->at(i).data.data());
VLOG(2) << "(logid=" << log_id << ") first element data in var[" << i VLOG(2) << "(logid=" << log_id << ") first element data in var[" << i
<< "] is " << req->insts(0).tensor_array(i).int_data(0); << "] is " << req->insts(0).tensor_array(i).int_data(0);
int offset = 0; offset = 0;
int elem_num = req->insts(0).tensor_array(i).int_data_size(); elem_num = req->insts(0).tensor_array(i).int_data_size();
if(!dst_ptr){ if (!dst_ptr) {
LOG(ERROR) << "dst_ptr is nullptr"; LOG(ERROR) << "dst_ptr is nullptr";
return -1; return -1;
} }
......
...@@ -42,7 +42,9 @@ using baidu::paddle_serving::predictor::PaddleGeneralModelConfig; ...@@ -42,7 +42,9 @@ using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
int GeneralResponseOp::inference() { int GeneralResponseOp::inference() {
const std::vector<std::string> pre_node_names = pre_names(); const std::vector<std::string> pre_node_names = pre_names();
VLOG(2) << "pre node names size: " << pre_node_names.size(); VLOG(2) << "pre node names size: " << pre_node_names.size();
const GeneralBlob *input_blob; const GeneralBlob *input_blob = nullptr;
int var_idx = 0;
int cap = 1;
uint64_t log_id = uint64_t log_id =
get_depend_argument<GeneralBlob>(pre_node_names[0])->GetLogId(); get_depend_argument<GeneralBlob>(pre_node_names[0])->GetLogId();
...@@ -116,9 +118,9 @@ int GeneralResponseOp::inference() { ...@@ -116,9 +118,9 @@ int GeneralResponseOp::inference() {
} }
} }
int var_idx = 0; var_idx = 0;
for (auto &idx : fetch_index) { for (auto &idx : fetch_index) {
int cap = 1; cap = 1;
for (int j = 0; j < in->at(idx).shape.size(); ++j) { for (int j = 0; j < in->at(idx).shape.size(); ++j) {
cap *= in->at(idx).shape[j]; cap *= in->at(idx).shape[j];
} }
......
...@@ -612,13 +612,13 @@ class FluidInferEngine : public CloneDBReloadableInferEngine<FluidFamilyCore> { ...@@ -612,13 +612,13 @@ class FluidInferEngine : public CloneDBReloadableInferEngine<FluidFamilyCore> {
void* origin_data = (*tensorVector_in_pointer)[i].data.data(); void* origin_data = (*tensorVector_in_pointer)[i].data.data();
//Because the core needs to determine the size of memory space according to the data type passed in. //Because the core needs to determine the size of memory space according to the data type passed in.
//The pointer type of data must be one of float *,int64_t*,int32_t* instead void*. //The pointer type of data must be one of float *,int64_t*,int32_t* instead void*.
if((*tensorVector_in_pointer)[i].dtype == paddle::PaddleDType::FLOAT32){ if ((*tensorVector_in_pointer)[i].dtype == paddle::PaddleDType::FLOAT32) {
float* data = static_cast<float*>(origin_data); float* data = static_cast<float*>(origin_data);
lod_tensor_in->CopyFromCpu(data); lod_tensor_in->CopyFromCpu(data);
}else if((*tensorVector_in_pointer)[i].dtype == paddle::PaddleDType::INT64){ }else if ((*tensorVector_in_pointer)[i].dtype == paddle::PaddleDType::INT64) {
int64_t* data = static_cast<int64_t*>(origin_data); int64_t* data = static_cast<int64_t*>(origin_data);
lod_tensor_in->CopyFromCpu(data); lod_tensor_in->CopyFromCpu(data);
}else if((*tensorVector_in_pointer)[i].dtype == paddle::PaddleDType::INT32){ }else if ((*tensorVector_in_pointer)[i].dtype == paddle::PaddleDType::INT32) {
int32_t* data = static_cast<int32_t*>(origin_data); int32_t* data = static_cast<int32_t*>(origin_data);
lod_tensor_in->CopyFromCpu(data); lod_tensor_in->CopyFromCpu(data);
} }
...@@ -639,7 +639,7 @@ class FluidInferEngine : public CloneDBReloadableInferEngine<FluidFamilyCore> { ...@@ -639,7 +639,7 @@ class FluidInferEngine : public CloneDBReloadableInferEngine<FluidFamilyCore> {
char* databuf_char = NULL; char* databuf_char = NULL;
size_t databuf_size = 0; size_t databuf_size = 0;
TensorVector* tensorVector_out_pointer = reinterpret_cast<TensorVector*>(out); TensorVector* tensorVector_out_pointer = reinterpret_cast<TensorVector*>(out);
if(!tensorVector_out_pointer){ if (!tensorVector_out_pointer) {
LOG(ERROR) << "tensorVector_out_pointer is nullptr,error"; LOG(ERROR) << "tensorVector_out_pointer is nullptr,error";
return -1; return -1;
} }
...@@ -650,7 +650,7 @@ class FluidInferEngine : public CloneDBReloadableInferEngine<FluidFamilyCore> { ...@@ -650,7 +650,7 @@ class FluidInferEngine : public CloneDBReloadableInferEngine<FluidFamilyCore> {
output_shape = lod_tensor_out->shape(); output_shape = lod_tensor_out->shape();
out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1, std::multiplies<int>()); out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1, std::multiplies<int>());
dataType = lod_tensor_out->type(); dataType = lod_tensor_out->type();
if(dataType == paddle::PaddleDType::FLOAT32){ if (dataType == paddle::PaddleDType::FLOAT32) {
databuf_size = out_num*sizeof(float); databuf_size = out_num*sizeof(float);
databuf_data = MempoolWrapper::instance().malloc(databuf_size); databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) { if (!databuf_data) {
...@@ -660,7 +660,7 @@ class FluidInferEngine : public CloneDBReloadableInferEngine<FluidFamilyCore> { ...@@ -660,7 +660,7 @@ class FluidInferEngine : public CloneDBReloadableInferEngine<FluidFamilyCore> {
float* data_out = reinterpret_cast<float*>(databuf_data); float* data_out = reinterpret_cast<float*>(databuf_data);
lod_tensor_out->CopyToCpu(data_out); lod_tensor_out->CopyToCpu(data_out);
databuf_char = reinterpret_cast<char*>(data_out); databuf_char = reinterpret_cast<char*>(data_out);
}else if(dataType == paddle::PaddleDType::INT64){ }else if (dataType == paddle::PaddleDType::INT64) {
databuf_size = out_num*sizeof(int64_t); databuf_size = out_num*sizeof(int64_t);
databuf_data = MempoolWrapper::instance().malloc(databuf_size); databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) { if (!databuf_data) {
...@@ -670,7 +670,7 @@ class FluidInferEngine : public CloneDBReloadableInferEngine<FluidFamilyCore> { ...@@ -670,7 +670,7 @@ class FluidInferEngine : public CloneDBReloadableInferEngine<FluidFamilyCore> {
int64_t* data_out = reinterpret_cast<int64_t*>(databuf_data); int64_t* data_out = reinterpret_cast<int64_t*>(databuf_data);
lod_tensor_out->CopyToCpu(data_out); lod_tensor_out->CopyToCpu(data_out);
databuf_char = reinterpret_cast<char*>(data_out); databuf_char = reinterpret_cast<char*>(data_out);
}else if(dataType == paddle::PaddleDType::INT32){ }else if (dataType == paddle::PaddleDType::INT32) {
databuf_size = out_num*sizeof(int32_t); databuf_size = out_num*sizeof(int32_t);
databuf_data = MempoolWrapper::instance().malloc(databuf_size); databuf_data = MempoolWrapper::instance().malloc(databuf_size);
if (!databuf_data) { if (!databuf_data) {
......
...@@ -80,9 +80,9 @@ struct Tensor { ...@@ -80,9 +80,9 @@ struct Tensor {
size_t ele_byte() const { size_t ele_byte() const {
if (type == INT64) { if (type == INT64) {
return sizeof(int64_t); return sizeof(int64_t);
} else if(type == FLOAT32){ } else if (type == FLOAT32) {
return sizeof(float); return sizeof(float);
}else{ } else {
return sizeof(int32_t); return sizeof(int32_t);
} }
} }
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册