提交 8bd466d2 编写于 作者: D Dong Daxiang 提交者: GitHub

Merge pull request #293 from guru4elephant/add_multi_gpu_web_serve

Add multi gpu web serve
......@@ -14,16 +14,13 @@
from paddle_serving_server_gpu.web_service import WebService
import sys
import os
import cv2
import base64
import numpy as np
from image_reader import ImageReader
class ImageService(WebService):
"""
preprocessing function for image classification
"""
def preprocess(self, feed={}, fetch=[]):
reader = ImageReader()
if "image" not in feed:
......@@ -37,9 +34,7 @@ class ImageService(WebService):
image_service = ImageService(name="image")
image_service.load_model_config(sys.argv[1])
gpu_ids = os.environ["CUDA_VISIBLE_DEVICES"]
gpus = [int(x) for x in gpu_ids.split(",")]
image_service.set_gpus(gpus)
image_service.set_gpus("0,1,2,3")
image_service.prepare_server(
workdir=sys.argv[2], port=int(sys.argv[3]), device="gpu")
image_service.run_server()
......@@ -16,6 +16,7 @@ import requests
import base64
import json
import time
import os
def predict(image_path, server):
......@@ -23,13 +24,17 @@ def predict(image_path, server):
req = json.dumps({"image": image, "fetch": ["score"]})
r = requests.post(
server, data=req, headers={"Content-Type": "application/json"})
return r
if __name__ == "__main__":
server = "http://127.0.0.1:9393/image/prediction"
image_path = "./data/n01440764_10026.JPEG"
server = "http://127.0.0.1:9295/image/prediction"
#image_path = "./data/n01440764_10026.JPEG"
image_list = os.listdir("./data/image_data/n01440764/")
start = time.time()
for i in range(1000):
predict(image_path, server)
for img in image_list:
image_file = "./data/image_data/n01440764/" + img
res = predict(image_file, server)
print(res.json()["score"][0])
end = time.time()
print(end - start)
......@@ -15,7 +15,7 @@
# pylint: disable=doc-string-missing
from flask import Flask, request, abort
from multiprocessing import Pool, Process
from multiprocessing import Pool, Process, Queue
from paddle_serving_server_gpu import OpMaker, OpSeqMaker, Server
import paddle_serving_server_gpu as serving
from paddle_serving_client import Client
......@@ -29,12 +29,13 @@ class WebService(object):
self.name = name
self.gpus = []
self.rpc_service_list = []
self.input_queues = []
def load_model_config(self, model_config):
self.model_config = model_config
def set_gpus(self, gpus):
self.gpus = gpus
self.gpus = [int(x) for x in gpus.split(",")]
def default_rpc_service(self,
workdir="conf",
......@@ -86,60 +87,101 @@ class WebService(object):
gpuid,
thread_num=10))
def producers(self, inputqueue, endpoint):
client = Client()
client.load_client_config("{}/serving_server_conf.prototxt".format(
self.model_config))
client.connect([endpoint])
while True:
request_json = inputqueue.get()
feed, fetch = self.preprocess(request_json, request_json["fetch"])
if "fetch" in feed:
del feed["fetch"]
fetch_map = client.predict(feed=feed, fetch=fetch)
fetch_map = self.postprocess(
feed=request_json, fetch=fetch, fetch_map=fetch_map)
self.output_queue.put(fetch_map)
def _launch_web_service(self, gpu_num):
app_instance = Flask(__name__)
client_list = []
if gpu_num > 1:
gpu_num = 0
for i in range(gpu_num):
client_service = Client()
client_service.load_client_config(
"{}/serving_server_conf.prototxt".format(self.model_config))
client_service.connect(["0.0.0.0:{}".format(self.port + i + 1)])
client_list.append(client_service)
time.sleep(1)
service_name = "/" + self.name + "/prediction"
self.input_queues = []
self.output_queue = Queue()
for i in range(gpu_num):
self.input_queues.append(Queue())
producer_list = []
for i, input_q in enumerate(self.input_queues):
producer_processes = Process(
target=self.producers,
args=(
input_q,
"0.0.0.0:{}".format(self.port + 1 + i), ))
producer_list.append(producer_processes)
for p in producer_list:
p.start()
client = Client()
client.load_client_config("{}/serving_server_conf.prototxt".format(
self.model_config))
client.connect(["0.0.0.0:{}".format(self.port + 1)])
self.idx = 0
@app_instance.route(service_name, methods=['POST'])
def get_prediction():
if not request.json:
abort(400)
if "fetch" not in request.json:
abort(400)
self.input_queues[self.idx].put(request.json)
#self.input_queues[0].put(request.json)
self.idx += 1
if self.idx >= len(self.gpus):
self.idx = 0
result = self.output_queue.get()
return result
'''
feed, fetch = self.preprocess(request.json, request.json["fetch"])
if "fetch" in feed:
del feed["fetch"]
fetch_map = client_list[0].predict(feed=feed, fetch=fetch)
fetch_map = client.predict(feed=feed, fetch=fetch)
fetch_map = self.postprocess(
feed=request.json, fetch=fetch, fetch_map=fetch_map)
return fetch_map
'''
app_instance.run(host="0.0.0.0",
port=self.port,
threaded=False,
processes=1)
for p in producer_list:
p.join()
def run_server(self):
import socket
localIP = socket.gethostbyname(socket.gethostname())
print("web service address:")
print("http://{}:{}/{}/prediction".format(localIP, self.port,
self.name))
rpc_processes = []
for idx in range(len(self.rpc_service_list)):
p_rpc = Process(target=self._launch_rpc_service, args=(idx, ))
rpc_processes.append(p_rpc)
for p in rpc_processes:
server_pros = []
for i, service in enumerate(self.rpc_service_list):
p = Process(target=self._launch_rpc_service, args=(i, ))
server_pros.append(p)
for p in server_pros:
p.start()
p_web = Process(
target=self._launch_web_service, args=(len(self.gpus), ))
p_web.start()
for p in rpc_processes:
p.join()
p_web.join()
for p in server_pros:
p.join()
def preprocess(self, feed={}, fetch=[]):
return feed, fetch
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册