Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
83902386
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
83902386
编写于
9月 03, 2021
作者:
S
ShiningZhang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
python client support uint8&int8
上级
ee5a9489
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
199 addition
and
38 deletion
+199
-38
core/configure/proto/general_model_service.proto
core/configure/proto/general_model_service.proto
+72
-16
core/general-client/include/general_model.h
core/general-client/include/general_model.h
+23
-0
core/general-client/src/client.cpp
core/general-client/src/client.cpp
+3
-3
core/general-client/src/general_model.cpp
core/general-client/src/general_model.cpp
+43
-3
core/general-client/src/pybind_general_model.cpp
core/general-client/src/pybind_general_model.cpp
+13
-0
core/general-server/proto/general_model_service.proto
core/general-server/proto/general_model_service.proto
+1
-1
core/pdcodegen/src/pdcodegen.cpp
core/pdcodegen/src/pdcodegen.cpp
+0
-9
python/paddle_serving_client/client.py
python/paddle_serving_client/client.py
+42
-4
python/paddle_serving_client/httpclient.py
python/paddle_serving_client/httpclient.py
+2
-2
未找到文件。
core/configure/proto/general_model_service.proto
浏览文件 @
83902386
...
...
@@ -12,41 +12,97 @@
// See the License for the specific language governing permissions and
// limitations under the License.
syntax
=
"proto
2
"
;
syntax
=
"proto
3
"
;
package
baidu
.
paddle_serving.predictor.general_model
;
option
java_multiple_files
=
true
;
option
cc_generic_services
=
true
;
message
Tensor
{
repeated
string
data
=
1
;
repeated
int32
int_data
=
2
;
repeated
int64
int64_data
=
3
;
repeated
float
float_data
=
4
;
optional
int32
elem_type
=
5
;
// 0 means int64, 1 means float32, 2 means int32, 3 means string
repeated
int32
shape
=
6
;
// shape should include batch
repeated
int32
lod
=
7
;
// only for fetch tensor currently
optional
string
name
=
8
;
// get from the Model prototxt
optional
string
alias_name
=
9
;
// get from the Model prototxt
// VarType: INT64
repeated
int64
int64_data
=
1
;
// VarType: FP32
repeated
float
float_data
=
2
;
// VarType: INT32
repeated
int32
int_data
=
3
;
// VarType: FP64
repeated
double
float64_data
=
4
;
// VarType: UINT32
repeated
uint32
uint32_data
=
5
;
// VarType: BOOL
repeated
bool
bool_data
=
6
;
// (No support)VarType: COMPLEX64, 2x represents the real part, 2x+1
// represents the imaginary part
repeated
float
complex64_data
=
7
;
// (No support)VarType: COMPLEX128, 2x represents the real part, 2x+1
// represents the imaginary part
repeated
double
complex128_data
=
8
;
// VarType: STRING
repeated
string
data
=
9
;
// Element types:
// 0 => INT64
// 1 => FP32
// 2 => INT32
// 3 => FP64
// 4 => INT16
// 5 => FP16
// 6 => BF16
// 7 => UINT8
// 8 => INT8
// 9 => BOOL
// 10 => COMPLEX64
// 11 => COMPLEX128
// 20 => STRING
int32
elem_type
=
10
;
// Shape of the tensor, including batch dimensions.
repeated
int32
shape
=
11
;
// Level of data(LOD), support variable length data, only for fetch tensor
// currently.
repeated
int32
lod
=
12
;
// Correspond to the variable 'name' in the model description prototxt.
string
name
=
13
;
// Correspond to the variable 'alias_name' in the model description prototxt.
string
alias_name
=
14
;
// get from the Model prototxt
// VarType: FP16, INT16, INT8, BF16, UINT8
bytes
tensor_content
=
15
;
};
message
Request
{
repeated
Tensor
tensor
=
1
;
repeated
string
fetch_var_names
=
2
;
optional
bool
profile_server
=
3
[
default
=
false
]
;
required
uint64
log_id
=
4
[
default
=
0
]
;
bool
profile_server
=
3
;
uint64
log_id
=
4
;
};
message
Response
{
repeated
ModelOutput
outputs
=
1
;
repeated
int64
profile_time
=
2
;
// Error code
int32
err_no
=
3
;
// Error messages
string
err_msg
=
4
;
};
message
ModelOutput
{
repeated
Tensor
tensor
=
1
;
optional
string
engine_name
=
2
;
string
engine_name
=
2
;
}
service
GeneralModelService
{
rpc
inference
(
Request
)
returns
(
Response
)
{}
rpc
debug
(
Request
)
returns
(
Response
)
{}
rpc
inference
(
Request
)
returns
(
Response
)
;
rpc
debug
(
Request
)
returns
(
Response
)
;
};
core/general-client/include/general_model.h
浏览文件 @
83902386
...
...
@@ -51,6 +51,8 @@ class ModelRes {
res
.
_float_value_map
.
end
());
_int32_value_map
.
insert
(
res
.
_int32_value_map
.
begin
(),
res
.
_int32_value_map
.
end
());
_string_value_map
.
insert
(
res
.
_string_value_map
.
begin
(),
res
.
_string_value_map
.
end
());
_shape_map
.
insert
(
res
.
_shape_map
.
begin
(),
res
.
_shape_map
.
end
());
_lod_map
.
insert
(
res
.
_lod_map
.
begin
(),
res
.
_lod_map
.
end
());
_tensor_alias_names
.
insert
(
_tensor_alias_names
.
end
(),
...
...
@@ -68,6 +70,9 @@ class ModelRes {
_int32_value_map
.
insert
(
std
::
make_move_iterator
(
std
::
begin
(
res
.
_int32_value_map
)),
std
::
make_move_iterator
(
std
::
end
(
res
.
_int32_value_map
)));
_string_value_map
.
insert
(
std
::
make_move_iterator
(
std
::
begin
(
res
.
_string_value_map
)),
std
::
make_move_iterator
(
std
::
end
(
res
.
_string_value_map
)));
_shape_map
.
insert
(
std
::
make_move_iterator
(
std
::
begin
(
res
.
_shape_map
)),
std
::
make_move_iterator
(
std
::
end
(
res
.
_shape_map
)));
_lod_map
.
insert
(
std
::
make_move_iterator
(
std
::
begin
(
res
.
_lod_map
)),
...
...
@@ -96,6 +101,12 @@ class ModelRes {
std
::
vector
<
int32_t
>&&
get_int32_by_name_with_rv
(
const
std
::
string
&
name
)
{
return
std
::
move
(
_int32_value_map
[
name
]);
}
const
std
::
string
&
get_string_by_name
(
const
std
::
string
&
name
)
{
return
_string_value_map
[
name
];
}
std
::
string
&&
get_string_by_name_with_rv
(
const
std
::
string
&
name
)
{
return
std
::
move
(
_string_value_map
[
name
]);
}
const
std
::
vector
<
int
>&
get_shape_by_name
(
const
std
::
string
&
name
)
{
return
_shape_map
[
name
];
}
...
...
@@ -128,6 +139,9 @@ class ModelRes {
_int32_value_map
.
insert
(
std
::
make_move_iterator
(
std
::
begin
(
res
.
_int32_value_map
)),
std
::
make_move_iterator
(
std
::
end
(
res
.
_int32_value_map
)));
_string_value_map
.
insert
(
std
::
make_move_iterator
(
std
::
begin
(
res
.
_string_value_map
)),
std
::
make_move_iterator
(
std
::
end
(
res
.
_string_value_map
)));
_shape_map
.
insert
(
std
::
make_move_iterator
(
std
::
begin
(
res
.
_shape_map
)),
std
::
make_move_iterator
(
std
::
end
(
res
.
_shape_map
)));
_lod_map
.
insert
(
std
::
make_move_iterator
(
std
::
begin
(
res
.
_lod_map
)),
...
...
@@ -145,6 +159,7 @@ class ModelRes {
std
::
map
<
std
::
string
,
std
::
vector
<
int64_t
>>
_int64_value_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
float
>>
_float_value_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
int32_t
>>
_int32_value_map
;
std
::
map
<
std
::
string
,
std
::
string
>
_string_value_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
_shape_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
_lod_map
;
std
::
vector
<
std
::
string
>
_tensor_alias_names
;
...
...
@@ -184,6 +199,14 @@ class PredictorRes {
const
std
::
string
&
name
)
{
return
std
::
move
(
_models
[
model_idx
].
get_int32_by_name_with_rv
(
name
));
}
const
std
::
string
&
get_string_by_name
(
const
int
model_idx
,
const
std
::
string
&
name
)
{
return
_models
[
model_idx
].
get_string_by_name
(
name
);
}
std
::
string
&&
get_string_by_name_with_rv
(
const
int
model_idx
,
const
std
::
string
&
name
)
{
return
std
::
move
(
_models
[
model_idx
].
get_string_by_name_with_rv
(
name
));
}
const
std
::
vector
<
int
>&
get_shape_by_name
(
const
int
model_idx
,
const
std
::
string
&
name
)
{
return
_models
[
model_idx
].
get_shape_by_name
(
name
);
...
...
core/general-client/src/client.cpp
浏览文件 @
83902386
...
...
@@ -23,8 +23,8 @@ using configure::GeneralModelConfig;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Request
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Response
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Tensor
;
// paddle inference 2.1 support: FLOAT32, INT64, INT32, UINT8
// will support:
INT8,
FLOAT16
// paddle inference 2.1 support: FLOAT32, INT64, INT32, UINT8
, INT8
// will support: FLOAT16
enum
ProtoDataType
{
P_INT64
=
0
,
P_FLOAT32
,
...
...
@@ -38,7 +38,7 @@ enum ProtoDataType {
P_BOOL
,
P_COMPLEX64
,
P_COMPLEX128
,
P_STRING
,
P_STRING
=
20
,
};
int
ServingClient
::
init
(
const
std
::
vector
<
std
::
string
>&
client_conf
,
...
...
core/general-client/src/general_model.cpp
浏览文件 @
83902386
...
...
@@ -25,8 +25,8 @@ using baidu::paddle_serving::Timer;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Request
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Response
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Tensor
;
// paddle inference
2.1 support: FLOAT32, INT64, INT32, U
INT8
// will support:
INT8,
FLOAT16
// paddle inference
support: FLOAT32, INT64, INT32, UINT8,
INT8
// will support: FLOAT16
enum
ProtoDataType
{
P_INT64
=
0
,
P_FLOAT32
,
...
...
@@ -40,7 +40,7 @@ enum ProtoDataType {
P_BOOL
,
P_COMPLEX64
,
P_COMPLEX128
,
P_STRING
,
P_STRING
=
20
,
};
std
::
once_flag
gflags_init_flag
;
namespace
py
=
pybind11
;
...
...
@@ -278,6 +278,8 @@ int PredictorClient::numpy_predict(
vec_idx
++
;
}
// Add !P_STRING feed data of string_input to tensor_content
// UINT8 INT8 FLOAT16
vec_idx
=
0
;
for
(
auto
&
name
:
string_feed_name
)
{
int
idx
=
_feed_name_to_idx
[
name
];
...
...
@@ -285,6 +287,35 @@ int PredictorClient::numpy_predict(
LOG
(
ERROR
)
<<
"idx > tensor_vec.size()"
;
return
-
1
;
}
if
(
_type
[
idx
]
==
P_STRING
)
{
continue
;
}
Tensor
*
tensor
=
tensor_vec
[
idx
];
for
(
uint32_t
j
=
0
;
j
<
string_shape
[
vec_idx
].
size
();
++
j
)
{
tensor
->
add_shape
(
string_shape
[
vec_idx
][
j
]);
}
for
(
uint32_t
j
=
0
;
j
<
string_lod_slot_batch
[
vec_idx
].
size
();
++
j
)
{
tensor
->
add_lod
(
string_lod_slot_batch
[
vec_idx
][
j
]);
}
tensor
->
set_elem_type
(
_type
[
idx
]);
tensor
->
set_name
(
_feed_name
[
idx
]);
tensor
->
set_alias_name
(
name
);
tensor
->
set_tensor_content
(
string_feed
[
vec_idx
]);
vec_idx
++
;
}
vec_idx
=
0
;
for
(
auto
&
name
:
string_feed_name
)
{
int
idx
=
_feed_name_to_idx
[
name
];
if
(
idx
>=
tensor_vec
.
size
())
{
LOG
(
ERROR
)
<<
"idx > tensor_vec.size()"
;
return
-
1
;
}
if
(
_type
[
idx
]
!=
P_STRING
)
{
continue
;
}
Tensor
*
tensor
=
tensor_vec
[
idx
];
for
(
uint32_t
j
=
0
;
j
<
string_shape
[
vec_idx
].
size
();
++
j
)
{
...
...
@@ -382,6 +413,15 @@ int PredictorClient::numpy_predict(
model
.
_int32_value_map
[
name
]
=
std
::
vector
<
int32_t
>
(
output
.
tensor
(
idx
).
int_data
().
begin
(),
output
.
tensor
(
idx
).
int_data
().
begin
()
+
size
);
}
else
if
(
_fetch_name_to_type
[
name
]
==
P_UINT8
)
{
VLOG
(
2
)
<<
"fetch var "
<<
name
<<
"type uint8"
;
model
.
_string_value_map
[
name
]
=
output
.
tensor
(
idx
).
tensor_content
();
}
else
if
(
_fetch_name_to_type
[
name
]
==
P_INT8
)
{
VLOG
(
2
)
<<
"fetch var "
<<
name
<<
"type int8"
;
model
.
_string_value_map
[
name
]
=
output
.
tensor
(
idx
).
tensor_content
();
}
else
if
(
_fetch_name_to_type
[
name
]
==
P_FP16
)
{
VLOG
(
2
)
<<
"fetch var "
<<
name
<<
"type float16"
;
model
.
_string_value_map
[
name
]
=
output
.
tensor
(
idx
).
tensor_content
();
}
}
predict_res_batch
.
add_model_res
(
std
::
move
(
model
));
...
...
core/general-client/src/pybind_general_model.cpp
浏览文件 @
83902386
...
...
@@ -49,6 +49,19 @@ PYBIND11_MODULE(serving_client, m) {
});
return
py
::
array
(
ptr
->
size
(),
ptr
->
data
(),
capsule
);
})
.
def
(
"get_int32_by_name"
,
[](
PredictorRes
&
self
,
int
model_idx
,
std
::
string
&
name
)
{
std
::
vector
<
int32_t
>
*
ptr
=
new
std
::
vector
<
int32_t
>
(
std
::
move
(
self
.
get_int32_by_name_with_rv
(
model_idx
,
name
)));
auto
capsule
=
py
::
capsule
(
ptr
,
[](
void
*
p
)
{
delete
reinterpret_cast
<
std
::
vector
<
int32_t
>
*>
(
p
);
});
return
py
::
array
(
ptr
->
size
(),
ptr
->
data
(),
capsule
);
})
.
def
(
"get_string_by_name"
,
[](
PredictorRes
&
self
,
int
model_idx
,
std
::
string
&
name
)
{
return
self
.
get_string_by_name_with_rv
(
model_idx
,
name
);
})
.
def
(
"get_shape"
,
[](
PredictorRes
&
self
,
int
model_idx
,
std
::
string
&
name
)
{
std
::
vector
<
int
>
*
ptr
=
new
std
::
vector
<
int
>
(
...
...
core/general-server/proto/general_model_service.proto
浏览文件 @
83902386
...
...
@@ -62,7 +62,7 @@ message Tensor {
// 9 => BOOL
// 10 => COMPLEX64
// 11 => COMPLEX128
//
12
=> STRING
//
20
=> STRING
int32
elem_type
=
10
;
// Shape of the tensor, including batch dimensions.
...
...
core/pdcodegen/src/pdcodegen.cpp
浏览文件 @
83902386
...
...
@@ -1492,11 +1492,6 @@ class PdsCodeGenerator : public CodeGenerator {
const
FieldDescriptor
*
fd
=
in_shared_fields
[
si
];
std
::
string
field_name
=
fd
->
name
();
printer
->
Print
(
"
\n
/////$field_name$
\n
"
,
"field_name"
,
field_name
);
if
(
fd
->
is_optional
())
{
printer
->
Print
(
"if (req->has_$field_name$()) {
\n
"
,
"field_name"
,
field_name
);
printer
->
Indent
();
}
if
(
fd
->
cpp_type
()
==
google
::
protobuf
::
FieldDescriptor
::
CPPTYPE_MESSAGE
||
fd
->
is_repeated
())
{
...
...
@@ -1509,10 +1504,6 @@ class PdsCodeGenerator : public CodeGenerator {
"field_name"
,
field_name
);
}
if
(
fd
->
is_optional
())
{
printer
->
Outdent
();
printer
->
Print
(
"}
\n
"
);
}
}
printer
->
Print
(
...
...
python/paddle_serving_client/client.py
浏览文件 @
83902386
...
...
@@ -31,15 +31,21 @@ sys.path.append(
#param 'type'(which is in feed_var or fetch_var) = 0 means dataType is int64
#param 'type'(which is in feed_var or fetch_var) = 1 means dataType is float32
#param 'type'(which is in feed_var or fetch_var) = 2 means dataType is int32
#param 'type'(which is in feed_var or fetch_var) = 3 means dataType is string(also called bytes in proto)
#param 'type'(which is in feed_var or fetch_var) = 5 means dataType is float16
#param 'type'(which is in feed_var or fetch_var) = 7 means dataType is uint8
#param 'type'(which is in feed_var or fetch_var) = 8 means dataType is int8
#param 'type'(which is in feed_var or fetch_var) = 20 means dataType is string(also called bytes in proto)
int64_type
=
0
float32_type
=
1
int32_type
=
2
bytes_type
=
3
float16_type
=
5
uint8_type
=
7
int8_type
=
8
bytes_type
=
20
#int_type,float_type,string_type are the set of each subdivision classes.
int_type
=
set
([
int64_type
,
int32_type
])
float_type
=
set
([
float32_type
])
string_type
=
set
([
bytes_type
])
string_type
=
set
([
bytes_type
,
float16_type
,
uint8_type
,
int8_type
])
class
_NOPProfiler
(
object
):
...
...
@@ -411,7 +417,7 @@ class Client(object):
key
)])
else
:
string_lod_slot_batch
.
append
([])
string_slot
.
append
(
feed_dict
[
key
])
string_slot
.
append
(
feed_dict
[
key
]
.
tostring
()
)
self
.
has_numpy_input
=
True
self
.
profile_
.
record
(
'py_prepro_1'
)
...
...
@@ -492,6 +498,38 @@ class Client(object):
tmp_lod
=
result_batch_handle
.
get_lod
(
mi
,
name
)
if
np
.
size
(
tmp_lod
)
>
0
:
result_map
[
"{}.lod"
.
format
(
name
)]
=
tmp_lod
elif
self
.
fetch_names_to_type_
[
name
]
==
uint8_type
:
# result_map[name] will be py::array(numpy array)
tmp_str
=
result_batch_handle
.
get_string_by_name
(
mi
,
name
)
result_map
[
name
]
=
np
.
fromstring
(
tmp_str
,
dtype
=
np
.
uint8
)
if
result_map
[
name
].
size
==
0
:
raise
ValueError
(
"Failed to fetch, maybe the type of [{}]"
" is wrong, please check the model file"
.
format
(
name
))
shape
=
result_batch_handle
.
get_shape
(
mi
,
name
)
result_map
[
name
].
shape
=
shape
if
name
in
self
.
lod_tensor_set
:
tmp_lod
=
result_batch_handle
.
get_lod
(
mi
,
name
)
if
np
.
size
(
tmp_lod
)
>
0
:
result_map
[
"{}.lod"
.
format
(
name
)]
=
tmp_lod
elif
self
.
fetch_names_to_type_
[
name
]
==
int8_type
:
# result_map[name] will be py::array(numpy array)
tmp_str
=
result_batch_handle
.
get_string_by_name
(
mi
,
name
)
result_map
[
name
]
=
np
.
fromstring
(
tmp_str
,
dtype
=
np
.
int8
)
if
result_map
[
name
].
size
==
0
:
raise
ValueError
(
"Failed to fetch, maybe the type of [{}]"
" is wrong, please check the model file"
.
format
(
name
))
shape
=
result_batch_handle
.
get_shape
(
mi
,
name
)
result_map
[
name
].
shape
=
shape
if
name
in
self
.
lod_tensor_set
:
tmp_lod
=
result_batch_handle
.
get_lod
(
mi
,
name
)
if
np
.
size
(
tmp_lod
)
>
0
:
result_map
[
"{}.lod"
.
format
(
name
)]
=
tmp_lod
multi_result_map
.
append
(
result_map
)
ret
=
None
if
len
(
model_engine_names
)
==
1
:
...
...
python/paddle_serving_client/httpclient.py
浏览文件 @
83902386
...
...
@@ -32,11 +32,11 @@ from .proto import general_model_service_pb2_grpc
#param 'type'(which is in feed_var or fetch_var) = 0 means dataType is int64
#param 'type'(which is in feed_var or fetch_var) = 1 means dataType is float32
#param 'type'(which is in feed_var or fetch_var) = 2 means dataType is int32
#param 'type'(which is in feed_var or fetch_var) =
3
means dataType is string(also called bytes in proto)
#param 'type'(which is in feed_var or fetch_var) =
20
means dataType is string(also called bytes in proto)
int64_type
=
0
float32_type
=
1
int32_type
=
2
bytes_type
=
3
bytes_type
=
20
# this is corresponding to the proto
proto_data_key_list
=
[
"int64_data"
,
"float_data"
,
"int_data"
,
"data"
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录