Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
7ebfabdc
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7ebfabdc
编写于
6月 07, 2020
作者:
D
dongdaxiang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add text recognition example
上级
21b61ee3
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
298 addition
and
1 deletion
+298
-1
python/examples/ocr_detection/7.jpg
python/examples/ocr_detection/7.jpg
+0
-0
python/examples/ocr_detection/text_det_client.py
python/examples/ocr_detection/text_det_client.py
+47
-0
python/paddle_serving_app/models/model_list.py
python/paddle_serving_app/models/model_list.py
+3
-0
python/paddle_serving_app/reader/__init__.py
python/paddle_serving_app/reader/__init__.py
+2
-1
python/paddle_serving_app/reader/image_reader.py
python/paddle_serving_app/reader/image_reader.py
+246
-0
未找到文件。
python/examples/ocr_detection/7.jpg
0 → 100644
浏览文件 @
7ebfabdc
90.5 KB
python/examples/ocr_detection/text_det_client.py
0 → 100644
浏览文件 @
7ebfabdc
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
from
paddle_serving_client
import
Client
from
paddle_serving_app.reader
import
Sequential
,
File2Image
,
ResizeByFactor
from
paddle_serving_app.reader
import
Div
,
Normalize
,
Transpose
from
paddle_serving_app.reader
import
DBPostProcess
,
FilterBoxes
client
=
Client
()
client
.
load_client_config
(
"ocr_det_client/serving_client_conf.prototxt"
)
client
.
connect
([
"127.0.0.1:9494"
])
read_image_file
=
File2Image
()
preprocess
=
Sequential
([
ResizeByFactor
(
32
,
960
),
Div
(
255
),
Normalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
]),
Transpose
(
(
2
,
0
,
1
))
])
post_func
=
DBPostProcess
({
"thresh"
:
0.3
,
"box_thresh"
:
0.5
,
"max_candidates"
:
1000
,
"unclip_ratio"
:
1.5
,
"min_size"
:
3
})
filter_func
=
FilterBoxes
(
10
,
10
)
img
=
read_image_file
(
name
)
ori_h
,
ori_w
,
_
=
img
.
shape
img
=
preprocess
(
img
)
new_h
,
new_w
,
_
=
img
.
shape
ratio_list
=
[
float
(
new_h
)
/
ori_h
,
float
(
new_w
)
/
ori_w
]
outputs
=
client
.
predict
(
feed
=
{
"image"
:
img
},
fetch
=
[
"concat_1.tmp_0"
])
dt_boxes_list
=
post_func
(
outputs
[
"concat_1.tmp_0"
],
[
ratio_list
])
dt_boxes
=
filter_func
(
dt_boxes_list
[
0
],
[
ori_h
,
ori_w
])
python/paddle_serving_app/models/model_list.py
浏览文件 @
7ebfabdc
...
...
@@ -31,6 +31,7 @@ class ServingModels(object):
self
.
model_dict
[
"ImageClassification"
]
=
[
"resnet_v2_50_imagenet"
,
"mobilenet_v2_imagenet"
]
self
.
model_dict
[
"TextDetection"
]
=
[
"ocr_detection"
]
self
.
model_dict
[
"OCR"
]
=
[
"ocr_rec"
]
image_class_url
=
"https://paddle-serving.bj.bcebos.com/paddle_hub_models/image/ImageClassification/"
...
...
@@ -40,6 +41,7 @@ class ServingModels(object):
senta_url
=
"https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SentimentAnalysis/"
semantic_url
=
"https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SemanticModel/"
wordseg_url
=
"https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/LexicalAnalysis/"
ocr_det_url
=
"https://paddle-serving.bj.bcebos.com/ocr/"
self
.
url_dict
=
{}
...
...
@@ -55,6 +57,7 @@ class ServingModels(object):
pack_url
(
self
.
model_dict
,
"ImageSegmentation"
,
image_seg_url
)
pack_url
(
self
.
model_dict
,
"ImageClassification"
,
image_class_url
)
pack_url
(
self
.
model_dict
,
"OCR"
,
ocr_url
)
pack_url
(
self
.
model_dict
,
"TextDetection"
,
ocr_det_url
)
def
get_model_list
(
self
):
return
self
.
model_dict
...
...
python/paddle_serving_app/reader/__init__.py
浏览文件 @
7ebfabdc
...
...
@@ -13,8 +13,9 @@
# limitations under the License.
from
.chinese_bert_reader
import
ChineseBertReader
from
.image_reader
import
ImageReader
,
File2Image
,
URL2Image
,
Sequential
,
Normalize
from
.image_reader
import
CenterCrop
,
Resize
,
Transpose
,
Div
,
RGB2BGR
,
BGR2RGB
from
.image_reader
import
CenterCrop
,
Resize
,
Transpose
,
Div
,
RGB2BGR
,
BGR2RGB
,
ResizeByFactor
from
.image_reader
import
RCNNPostprocess
,
SegPostprocess
,
PadStride
from
.image_reader
import
DBPostProcess
,
FilterBoxes
from
.lac_reader
import
LACReader
from
.senta_reader
import
SentaReader
from
.imdb_reader
import
IMDBDataset
...
...
python/paddle_serving_app/reader/image_reader.py
浏览文件 @
7ebfabdc
...
...
@@ -11,6 +11,9 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
cv2
import
os
import
numpy
as
np
...
...
@@ -18,6 +21,8 @@ import base64
import
sys
from
.
import
functional
as
F
from
PIL
import
Image
,
ImageDraw
from
shapely.geometry
import
Polygon
import
pyclipper
import
json
_cv2_interpolation_to_str
=
{
cv2
.
INTER_LINEAR
:
"cv2.INTER_LINEAR"
,
None
:
"None"
}
...
...
@@ -43,6 +48,196 @@ def generate_colormap(num_classes):
return
color_map
class
DBPostProcess
(
object
):
"""
The post process for Differentiable Binarization (DB).
"""
def
__init__
(
self
,
params
):
self
.
thresh
=
params
[
'thresh'
]
self
.
box_thresh
=
params
[
'box_thresh'
]
self
.
max_candidates
=
params
[
'max_candidates'
]
self
.
unclip_ratio
=
params
[
'unclip_ratio'
]
self
.
min_size
=
3
def
boxes_from_bitmap
(
self
,
pred
,
_bitmap
,
dest_width
,
dest_height
):
'''
_bitmap: single map with shape (1, H, W),
whose values are binarized as {0, 1}
'''
bitmap
=
_bitmap
height
,
width
=
bitmap
.
shape
outs
=
cv2
.
findContours
((
bitmap
*
255
).
astype
(
np
.
uint8
),
cv2
.
RETR_LIST
,
cv2
.
CHAIN_APPROX_SIMPLE
)
if
len
(
outs
)
==
3
:
img
,
contours
,
_
=
outs
[
0
],
outs
[
1
],
outs
[
2
]
elif
len
(
outs
)
==
2
:
contours
,
_
=
outs
[
0
],
outs
[
1
]
num_contours
=
min
(
len
(
contours
),
self
.
max_candidates
)
boxes
=
np
.
zeros
((
num_contours
,
4
,
2
),
dtype
=
np
.
int16
)
scores
=
np
.
zeros
((
num_contours
,
),
dtype
=
np
.
float32
)
for
index
in
range
(
num_contours
):
contour
=
contours
[
index
]
points
,
sside
=
self
.
get_mini_boxes
(
contour
)
if
sside
<
self
.
min_size
:
continue
points
=
np
.
array
(
points
)
score
=
self
.
box_score_fast
(
pred
,
points
.
reshape
(
-
1
,
2
))
if
self
.
box_thresh
>
score
:
continue
box
=
self
.
unclip
(
points
).
reshape
(
-
1
,
1
,
2
)
box
,
sside
=
self
.
get_mini_boxes
(
box
)
if
sside
<
self
.
min_size
+
2
:
continue
box
=
np
.
array
(
box
)
if
not
isinstance
(
dest_width
,
int
):
dest_width
=
dest_width
.
item
()
dest_height
=
dest_height
.
item
()
box
[:,
0
]
=
np
.
clip
(
np
.
round
(
box
[:,
0
]
/
width
*
dest_width
),
0
,
dest_width
)
box
[:,
1
]
=
np
.
clip
(
np
.
round
(
box
[:,
1
]
/
height
*
dest_height
),
0
,
dest_height
)
boxes
[
index
,
:,
:]
=
box
.
astype
(
np
.
int16
)
scores
[
index
]
=
score
return
boxes
,
scores
def
unclip
(
self
,
box
):
unclip_ratio
=
self
.
unclip_ratio
poly
=
Polygon
(
box
)
distance
=
poly
.
area
*
unclip_ratio
/
poly
.
length
offset
=
pyclipper
.
PyclipperOffset
()
offset
.
AddPath
(
box
,
pyclipper
.
JT_ROUND
,
pyclipper
.
ET_CLOSEDPOLYGON
)
expanded
=
np
.
array
(
offset
.
Execute
(
distance
))
return
expanded
def
get_mini_boxes
(
self
,
contour
):
bounding_box
=
cv2
.
minAreaRect
(
contour
)
points
=
sorted
(
list
(
cv2
.
boxPoints
(
bounding_box
)),
key
=
lambda
x
:
x
[
0
])
index_1
,
index_2
,
index_3
,
index_4
=
0
,
1
,
2
,
3
if
points
[
1
][
1
]
>
points
[
0
][
1
]:
index_1
=
0
index_4
=
1
else
:
index_1
=
1
index_4
=
0
if
points
[
3
][
1
]
>
points
[
2
][
1
]:
index_2
=
2
index_3
=
3
else
:
index_2
=
3
index_3
=
2
box
=
[
points
[
index_1
],
points
[
index_2
],
points
[
index_3
],
points
[
index_4
]
]
return
box
,
min
(
bounding_box
[
1
])
def
box_score_fast
(
self
,
bitmap
,
_box
):
h
,
w
=
bitmap
.
shape
[:
2
]
box
=
_box
.
copy
()
xmin
=
np
.
clip
(
np
.
floor
(
box
[:,
0
].
min
()).
astype
(
np
.
int
),
0
,
w
-
1
)
xmax
=
np
.
clip
(
np
.
ceil
(
box
[:,
0
].
max
()).
astype
(
np
.
int
),
0
,
w
-
1
)
ymin
=
np
.
clip
(
np
.
floor
(
box
[:,
1
].
min
()).
astype
(
np
.
int
),
0
,
h
-
1
)
ymax
=
np
.
clip
(
np
.
ceil
(
box
[:,
1
].
max
()).
astype
(
np
.
int
),
0
,
h
-
1
)
mask
=
np
.
zeros
((
ymax
-
ymin
+
1
,
xmax
-
xmin
+
1
),
dtype
=
np
.
uint8
)
box
[:,
0
]
=
box
[:,
0
]
-
xmin
box
[:,
1
]
=
box
[:,
1
]
-
ymin
cv2
.
fillPoly
(
mask
,
box
.
reshape
(
1
,
-
1
,
2
).
astype
(
np
.
int32
),
1
)
return
cv2
.
mean
(
bitmap
[
ymin
:
ymax
+
1
,
xmin
:
xmax
+
1
],
mask
)[
0
]
def
__call__
(
self
,
pred
,
ratio_list
):
pred
=
pred
[:,
0
,
:,
:]
segmentation
=
pred
>
self
.
thresh
boxes_batch
=
[]
for
batch_index
in
range
(
pred
.
shape
[
0
]):
height
,
width
=
pred
.
shape
[
-
2
:]
tmp_boxes
,
tmp_scores
=
self
.
boxes_from_bitmap
(
pred
[
batch_index
],
segmentation
[
batch_index
],
width
,
height
)
boxes
=
[]
for
k
in
range
(
len
(
tmp_boxes
)):
if
tmp_scores
[
k
]
>
self
.
box_thresh
:
boxes
.
append
(
tmp_boxes
[
k
])
if
len
(
boxes
)
>
0
:
boxes
=
np
.
array
(
boxes
)
ratio_h
,
ratio_w
=
ratio_list
[
batch_index
]
boxes
[:,
:,
0
]
=
boxes
[:,
:,
0
]
/
ratio_w
boxes
[:,
:,
1
]
=
boxes
[:,
:,
1
]
/
ratio_h
boxes_batch
.
append
(
boxes
)
return
boxes_batch
def
__repr__
(
self
):
return
self
.
__class__
.
__name__
+
\
" thresh: {1}, box_thresh: {2}, max_candidates: {3}, unclip_ratio: {4}, min_size: {5}"
.
format
(
self
.
thresh
,
self
.
box_thresh
,
self
.
max_candidates
,
self
.
unclip_ratio
,
self
.
min_size
)
class
FilterBoxes
(
object
):
def
__init__
(
self
,
width
,
height
):
self
.
filter_width
=
width
self
.
filter_height
=
height
def
order_points_clockwise
(
self
,
pts
):
"""
reference from: https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py
# sort the points based on their x-coordinates
"""
xSorted
=
pts
[
np
.
argsort
(
pts
[:,
0
]),
:]
# grab the left-most and right-most points from the sorted
# x-roodinate points
leftMost
=
xSorted
[:
2
,
:]
rightMost
=
xSorted
[
2
:,
:]
# now, sort the left-most coordinates according to their
# y-coordinates so we can grab the top-left and bottom-left
# points, respectively
leftMost
=
leftMost
[
np
.
argsort
(
leftMost
[:,
1
]),
:]
(
tl
,
bl
)
=
leftMost
rightMost
=
rightMost
[
np
.
argsort
(
rightMost
[:,
1
]),
:]
(
tr
,
br
)
=
rightMost
rect
=
np
.
array
([
tl
,
tr
,
br
,
bl
],
dtype
=
"float32"
)
return
rect
def
clip_det_res
(
self
,
points
,
img_height
,
img_width
):
for
pno
in
range
(
4
):
points
[
pno
,
0
]
=
int
(
min
(
max
(
points
[
pno
,
0
],
0
),
img_width
-
1
))
points
[
pno
,
1
]
=
int
(
min
(
max
(
points
[
pno
,
1
],
0
),
img_height
-
1
))
return
points
def
__call__
(
self
,
dt_boxes
,
image_shape
):
img_height
,
img_width
=
image_shape
[
0
:
2
]
dt_boxes_new
=
[]
for
box
in
dt_boxes
:
box
=
self
.
order_points_clockwise
(
box
)
box
=
self
.
clip_det_res
(
box
,
img_height
,
img_width
)
rect_width
=
int
(
np
.
linalg
.
norm
(
box
[
0
]
-
box
[
1
]))
rect_height
=
int
(
np
.
linalg
.
norm
(
box
[
0
]
-
box
[
3
]))
if
rect_width
<=
self
.
filter_width
or
\
rect_height
<=
self
.
filter_height
:
continue
dt_boxes_new
.
append
(
box
)
dt_boxes
=
np
.
array
(
dt_boxes_new
)
return
dt_boxes
def
__repr__
(
self
):
return
self
.
__class__
.
__name__
+
" filter_width: {1}, filter_height: {2}"
.
format
(
self
.
filter_width
,
self
.
filter_height
)
class
SegPostprocess
(
object
):
def
__init__
(
self
,
class_num
):
self
.
class_num
=
class_num
...
...
@@ -473,6 +668,57 @@ class Resize(object):
_cv2_interpolation_to_str
[
self
.
interpolation
])
class
ResizeByFactor
(
object
):
"""Resize the input numpy array Image to a size multiple of factor which is usually required by a network
Args:
factor (int): Resize factor. make width and height multiple factor of the value of factor. Default is 32
max_side_len (int): max size of width and height. if width or height is larger than max_side_len, just resize the width or the height. Default is 2400
"""
def
__init__
(
self
,
factor
=
32
,
max_side_len
=
2400
):
self
.
factor
=
factor
self
.
max_side_len
=
max_side_len
def
__call__
(
self
,
img
):
h
,
w
,
_
=
img
.
shape
resize_w
=
w
resize_h
=
h
if
max
(
resize_h
,
resize_w
)
>
self
.
max_side_len
:
if
resize_h
>
resize_w
:
ratio
=
float
(
self
.
max_side_len
)
/
resize_h
else
:
ratio
=
float
(
self
.
max_side_len
)
/
resize_w
else
:
ratio
=
1.
resize_h
=
int
(
resize_h
*
ratio
)
resize_w
=
int
(
resize_w
*
ratio
)
if
resize_h
%
self
.
factor
==
0
:
resize_h
=
resize_h
elif
resize_h
//
self
.
factor
<=
1
:
resize_h
=
self
.
factor
else
:
resize_h
=
(
resize_h
//
32
-
1
)
*
32
if
resize_w
%
self
.
factor
==
0
:
resize_w
=
resize_w
elif
resize_w
//
self
.
factor
<=
1
:
resize_w
=
self
.
factor
else
:
resize_w
=
(
resize_w
//
self
.
factor
-
1
)
*
self
.
factor
try
:
if
int
(
resize_w
)
<=
0
or
int
(
resize_h
)
<=
0
:
return
None
,
(
None
,
None
)
im
=
cv2
.
resize
(
img
,
(
int
(
resize_w
),
int
(
resize_h
)))
except
:
print
(
resize_w
,
resize_h
)
sys
.
exit
(
0
)
return
im
def
__repr__
(
self
):
return
self
.
__class__
.
__name__
+
'(factor={0}, max_side_len={1})'
.
format
(
self
.
factor
,
self
.
max_side_len
)
class
PadStride
(
object
):
def
__init__
(
self
,
stride
):
self
.
coarsest_stride
=
stride
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录