Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
21b61ee3
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
21b61ee3
编写于
6月 05, 2020
作者:
M
MRXLT
提交者:
GitHub
6月 05, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #650 from MRXLT/ce-script
CE script
上级
a13bf000
a2a43e0d
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
118 addition
and
138 deletion
+118
-138
python/examples/bert/benchmark.py
python/examples/bert/benchmark.py
+54
-25
python/examples/bert/benchmark.sh
python/examples/bert/benchmark.sh
+27
-6
python/examples/bert/benchmark_batch.py
python/examples/bert/benchmark_batch.py
+0
-79
python/examples/bert/benchmark_batch.sh
python/examples/bert/benchmark_batch.sh
+0
-19
python/examples/imagenet/benchmark.py
python/examples/imagenet/benchmark.py
+1
-1
python/examples/imagenet/benchmark.sh
python/examples/imagenet/benchmark.sh
+22
-6
python/examples/util/show_profile.py
python/examples/util/show_profile.py
+2
-2
python/paddle_serving_client/utils/__init__.py
python/paddle_serving_client/utils/__init__.py
+12
-0
未找到文件。
python/examples/bert/benchmark.py
浏览文件 @
21b61ee3
...
...
@@ -21,11 +21,7 @@ import sys
import
time
from
paddle_serving_client
import
Client
from
paddle_serving_client.utils
import
MultiThreadRunner
from
paddle_serving_client.utils
import
benchmark_args
from
batching
import
pad_batch_data
import
tokenization
import
requests
import
json
from
paddle_serving_client.utils
import
benchmark_args
,
show_latency
from
paddle_serving_app.reader
import
ChineseBertReader
args
=
benchmark_args
()
...
...
@@ -36,42 +32,75 @@ def single_func(idx, resource):
dataset
=
[]
for
line
in
fin
:
dataset
.
append
(
line
.
strip
())
profile_flags
=
False
latency_flags
=
False
if
os
.
getenv
(
"FLAGS_profile_client"
):
profile_flags
=
True
if
os
.
getenv
(
"FLAGS_serving_latency"
):
latency_flags
=
True
latency_list
=
[]
if
args
.
request
==
"rpc"
:
reader
=
ChineseBertReader
(
vocab_file
=
"vocab.txt"
,
max_seq_len
=
20
)
reader
=
ChineseBertReader
(
{
"max_seq_len"
:
128
}
)
fetch
=
[
"pooled_output"
]
client
=
Client
()
client
.
load_client_config
(
args
.
model
)
client
.
connect
([
resource
[
"endpoint"
][
idx
%
len
(
resource
[
"endpoint"
])]])
start
=
time
.
time
()
for
i
in
range
(
1000
):
if
args
.
batch_size
==
1
:
feed_dict
=
reader
.
process
(
dataset
[
i
])
result
=
client
.
predict
(
feed
=
feed_dict
,
fetch
=
fetch
)
for
i
in
range
(
turns
):
if
args
.
batch_size
>=
1
:
l_start
=
time
.
time
()
feed_batch
=
[]
b_start
=
time
.
time
()
for
bi
in
range
(
args
.
batch_size
):
feed_batch
.
append
(
reader
.
process
(
dataset
[
bi
]))
b_end
=
time
.
time
()
if
profile_flags
:
sys
.
stderr
.
write
(
"PROFILE
\t
pid:{}
\t
bert_pre_0:{} bert_pre_1:{}
\n
"
.
format
(
os
.
getpid
(),
int
(
round
(
b_start
*
1000000
)),
int
(
round
(
b_end
*
1000000
))))
result
=
client
.
predict
(
feed
=
feed_batch
,
fetch
=
fetch
)
l_end
=
time
.
time
()
if
latency_flags
:
latency_list
.
append
(
l_end
*
1000
-
l_start
*
1000
)
else
:
print
(
"unsupport batch size {}"
.
format
(
args
.
batch_size
))
elif
args
.
request
==
"http"
:
start
=
time
.
time
()
header
=
{
"Content-Type"
:
"application/json"
}
for
i
in
range
(
1000
):
dict_data
=
{
"words"
:
dataset
[
i
],
"fetch"
:
[
"pooled_output"
]}
r
=
requests
.
post
(
'http://{}/bert/prediction'
.
format
(
resource
[
"endpoint"
][
idx
%
len
(
resource
[
"endpoint"
])]),
data
=
json
.
dumps
(
dict_data
),
headers
=
header
)
raise
(
"not implemented"
)
end
=
time
.
time
()
return
[[
end
-
start
]]
if
latency_flags
:
return
[[
end
-
start
],
latency_list
]
else
:
return
[[
end
-
start
]]
if
__name__
==
'__main__'
:
multi_thread_runner
=
MultiThreadRunner
()
endpoint_list
=
[
"127.0.0.1:9292"
]
result
=
multi_thread_runner
.
run
(
single_func
,
args
.
thread
,
{
"endpoint"
:
endpoint_list
})
endpoint_list
=
[
"127.0.0.1:9292"
,
"127.0.0.1:9293"
,
"127.0.0.1:9294"
,
"127.0.0.1:9295"
]
turns
=
10
start
=
time
.
time
()
result
=
multi_thread_runner
.
run
(
single_func
,
args
.
thread
,
{
"endpoint"
:
endpoint_list
,
"turns"
:
turns
})
end
=
time
.
time
()
total_cost
=
end
-
start
avg_cost
=
0
for
i
in
range
(
args
.
thread
):
avg_cost
+=
result
[
0
][
i
]
avg_cost
=
avg_cost
/
args
.
thread
print
(
"average total cost {} s."
.
format
(
avg_cost
))
print
(
"total cost :{} s"
.
format
(
total_cost
))
print
(
"each thread cost :{} s. "
.
format
(
avg_cost
))
print
(
"qps :{} samples/s"
.
format
(
args
.
batch_size
*
args
.
thread
*
turns
/
total_cost
))
if
os
.
getenv
(
"FLAGS_serving_latency"
):
show_latency
(
result
[
1
])
python/examples/bert/benchmark.sh
浏览文件 @
21b61ee3
rm
profile_log
for
thread_num
in
1 2 4 8 16
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3
export
FLAGS_profile_server
=
1
export
FLAGS_profile_client
=
1
export
FLAGS_serving_latency
=
1
python3
-m
paddle_serving_server_gpu.serve
--model
$1
--port
9292
--thread
4
--gpu_ids
0,1,2,3
--mem_optim
False
--ir_optim
True 2> elog
>
stdlog &
sleep
5
#warm up
python3 benchmark.py
--thread
8
--batch_size
1
--model
$2
/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
for
thread_num
in
4 8 16
do
$PYTHONROOT
/bin/python benchmark.py
--thread
$thread_num
--model
serving_client_conf/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
echo
"========================================"
echo
"batch size :
$batch_size
"
>>
profile_log
$PYTHONROOT
/bin/python ../util/show_profile.py profile
$thread_num
>>
profile_log
tail
-n
1 profile
>>
profile_log
for
batch_size
in
1 4 16 64 256
do
python3 benchmark.py
--thread
$thread_num
--batch_size
$batch_size
--model
$2
/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
echo
"model name :"
$1
echo
"thread num :"
$thread_num
echo
"batch size :"
$batch_size
echo
"=================Done===================="
echo
"model name :
$1
"
>>
profile_log_
$1
echo
"batch size :
$batch_size
"
>>
profile_log_
$1
python3 ../util/show_profile.py profile
$thread_num
>>
profile_log_
$1
tail
-n
8 profile
>>
profile_log_
$1
echo
""
>>
profile_log_
$1
done
done
ps
-ef
|grep
'serving'
|grep
-v
grep
|cut
-c
9-15 | xargs
kill
-9
python/examples/bert/benchmark_batch.py
已删除
100644 → 0
浏览文件 @
a13bf000
# -*- coding: utf-8 -*-
#
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from
__future__
import
unicode_literals
,
absolute_import
import
os
import
sys
import
time
from
paddle_serving_client
import
Client
from
paddle_serving_client.utils
import
MultiThreadRunner
from
paddle_serving_client.utils
import
benchmark_args
from
batching
import
pad_batch_data
import
tokenization
import
requests
import
json
from
bert_reader
import
BertReader
args
=
benchmark_args
()
def
single_func
(
idx
,
resource
):
fin
=
open
(
"data-c.txt"
)
dataset
=
[]
for
line
in
fin
:
dataset
.
append
(
line
.
strip
())
profile_flags
=
False
if
os
.
environ
[
"FLAGS_profile_client"
]:
profile_flags
=
True
if
args
.
request
==
"rpc"
:
reader
=
BertReader
(
vocab_file
=
"vocab.txt"
,
max_seq_len
=
20
)
fetch
=
[
"pooled_output"
]
client
=
Client
()
client
.
load_client_config
(
args
.
model
)
client
.
connect
([
resource
[
"endpoint"
][
idx
%
len
(
resource
[
"endpoint"
])]])
start
=
time
.
time
()
for
i
in
range
(
1000
):
if
args
.
batch_size
>=
1
:
feed_batch
=
[]
b_start
=
time
.
time
()
for
bi
in
range
(
args
.
batch_size
):
feed_batch
.
append
(
reader
.
process
(
dataset
[
bi
]))
b_end
=
time
.
time
()
if
profile_flags
:
print
(
"PROFILE
\t
pid:{}
\t
bert_pre_0:{} bert_pre_1:{}"
.
format
(
os
.
getpid
(),
int
(
round
(
b_start
*
1000000
)),
int
(
round
(
b_end
*
1000000
))))
result
=
client
.
predict
(
feed
=
feed_batch
,
fetch
=
fetch
)
else
:
print
(
"unsupport batch size {}"
.
format
(
args
.
batch_size
))
elif
args
.
request
==
"http"
:
raise
(
"no batch predict for http"
)
end
=
time
.
time
()
return
[[
end
-
start
]]
if
__name__
==
'__main__'
:
multi_thread_runner
=
MultiThreadRunner
()
endpoint_list
=
[
"127.0.0.1:9292"
]
result
=
multi_thread_runner
.
run
(
single_func
,
args
.
thread
,
{
"endpoint"
:
endpoint_list
})
avg_cost
=
0
for
i
in
range
(
args
.
thread
):
avg_cost
+=
result
[
0
][
i
]
avg_cost
=
avg_cost
/
args
.
thread
print
(
"average total cost {} s."
.
format
(
avg_cost
))
python/examples/bert/benchmark_batch.sh
已删除
100644 → 0
浏览文件 @
a13bf000
rm
profile_log
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3
python
-m
paddle_serving_server_gpu.serve
--model
bert_seq20_model/
--port
9295
--thread
4
--gpu_ids
0,1,2,3 2> elog
>
stdlog &
sleep
5
for
thread_num
in
1 2 4 8 16
do
for
batch_size
in
1 2 4 8 16 32 64 128 256 512
do
$PYTHONROOT
/bin/python benchmark_batch.py
--thread
$thread_num
--batch_size
$batch_size
--model
serving_client_conf/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
echo
"========================================"
echo
"thread num: "
,
$thread_num
echo
"batch size: "
,
$batch_size
echo
"batch size :
$batch_size
"
>>
profile_log
$PYTHONROOT
/bin/python ../util/show_profile.py profile
$thread_num
>>
profile_log
tail
-n
1 profile
>>
profile_log
done
done
python/examples/imagenet/benchmark.py
浏览文件 @
21b61ee3
...
...
@@ -93,7 +93,7 @@ def single_func(idx, resource):
if
__name__
==
'__main__'
:
multi_thread_runner
=
MultiThreadRunner
()
endpoint_list
=
[
"127.0.0.1:9
696
"
]
endpoint_list
=
[
"127.0.0.1:9
393
"
]
#endpoint_list = endpoint_list + endpoint_list + endpoint_list
result
=
multi_thread_runner
.
run
(
single_func
,
args
.
thread
,
{
"endpoint"
:
endpoint_list
})
...
...
python/examples/imagenet/benchmark.sh
浏览文件 @
21b61ee3
rm
profile_log
for
thread_num
in
1 2 4 8
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3
export
FLAGS_profile_server
=
1
export
FLAGS_profile_client
=
1
python
-m
paddle_serving_server_gpu.serve
--model
$1
--port
9292
--thread
4
--gpu_ids
0,1,2,3 2> elog
>
stdlog &
sleep
5
#warm up
$PYTHONROOT
/bin/python benchmark.py
--thread
8
--batch_size
1
--model
$2
/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
for
thread_num
in
4 8 16
do
for
batch_size
in
1
2 4 8 16 32 64 128
for
batch_size
in
1
4 16 64 256
do
$PYTHONROOT
/bin/python benchmark.py
--thread
$thread_num
--batch_size
$batch_size
--model
ResNet50_vd_client_config/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
echo
"========================================"
echo
"batch size :
$batch_size
"
>>
profile_log
$PYTHONROOT
/bin/python benchmark.py
--thread
$thread_num
--batch_size
$batch_size
--model
$2
/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
echo
"model name :"
$1
echo
"thread num :"
$thread_num
echo
"batch size :"
$batch_size
echo
"=================Done===================="
echo
"model name :
$1
"
>>
profile_log
echo
"batch size :
$batch_size
"
>>
profile_log
$PYTHONROOT
/bin/python ../util/show_profile.py profile
$thread_num
>>
profile_log
tail
-n
1
profile
>>
profile_log
tail
-n
8
profile
>>
profile_log
done
done
ps
-ef
|grep
'serving'
|grep
-v
grep
|cut
-c
9-15 | xargs
kill
-9
python/examples/util/show_profile.py
浏览文件 @
21b61ee3
...
...
@@ -31,7 +31,7 @@ with open(profile_file) as f:
if
line
[
0
]
==
"PROFILE"
:
prase
(
line
[
2
])
print
(
"thread num {}"
.
format
(
thread_num
))
print
(
"thread num
:
{}"
.
format
(
thread_num
))
for
name
in
time_dict
:
print
(
"{} cost {} s in each thread "
.
format
(
name
,
time_dict
[
name
]
/
(
print
(
"{} cost
:
{} s in each thread "
.
format
(
name
,
time_dict
[
name
]
/
(
1000000.0
*
float
(
thread_num
))))
python/paddle_serving_client/utils/__init__.py
浏览文件 @
21b61ee3
...
...
@@ -17,6 +17,7 @@ import sys
import
subprocess
import
argparse
from
multiprocessing
import
Pool
import
numpy
as
np
def
benchmark_args
():
...
...
@@ -35,6 +36,17 @@ def benchmark_args():
return
parser
.
parse_args
()
def
show_latency
(
latency_list
):
latency_array
=
np
.
array
(
latency_list
)
info
=
"latency:
\n
"
info
+=
"mean :{} ms
\n
"
.
format
(
np
.
mean
(
latency_array
))
info
+=
"median :{} ms
\n
"
.
format
(
np
.
median
(
latency_array
))
info
+=
"80 percent :{} ms
\n
"
.
format
(
np
.
percentile
(
latency_array
,
80
))
info
+=
"90 percent :{} ms
\n
"
.
format
(
np
.
percentile
(
latency_array
,
90
))
info
+=
"99 percent :{} ms
\n
"
.
format
(
np
.
percentile
(
latency_array
,
99
))
sys
.
stderr
.
write
(
info
)
class
MultiThreadRunner
(
object
):
def
__init__
(
self
):
pass
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录