Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
7bdc2e30
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7bdc2e30
编写于
2月 19, 2021
作者:
W
wangjiawei04
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'docs_0.5.0' of
https://github.com/wangjiawei04/serving
into docs_0.5.0
上级
d85fefef
26af11ba
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
41 addition
and
104 deletion
+41
-104
python/examples/criteo_ctr/README.md
python/examples/criteo_ctr/README.md
+1
-1
python/examples/criteo_ctr/README_CN.md
python/examples/criteo_ctr/README_CN.md
+1
-1
python/examples/criteo_ctr/criteo_reader.py
python/examples/criteo_ctr/criteo_reader.py
+0
-83
python/examples/criteo_ctr/test_client.py
python/examples/criteo_ctr/test_client.py
+39
-19
未找到文件。
python/examples/criteo_ctr/README.md
浏览文件 @
7bdc2e30
...
...
@@ -26,6 +26,6 @@ python -m paddle_serving_server_gpu.serve --model ctr_serving_model/ --port 9292
### RPC Infer
```
python test_client.py ctr_client_conf/serving_client_conf.prototxt raw_data/
python test_client.py ctr_client_conf/serving_client_conf.prototxt raw_data/
part-0
```
the latency will display in the end.
python/examples/criteo_ctr/README_CN.md
浏览文件 @
7bdc2e30
...
...
@@ -26,6 +26,6 @@ python -m paddle_serving_server_gpu.serve --model ctr_serving_model/ --port 9292
### 执行预测
```
python test_client.py ctr_client_conf/serving_client_conf.prototxt raw_data/
python test_client.py ctr_client_conf/serving_client_conf.prototxt raw_data/
part-0
```
预测完毕会输出预测过程的耗时。
python/examples/criteo_ctr/criteo_reader.py
已删除
100644 → 0
浏览文件 @
d85fefef
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import
sys
import
paddle.fluid.incubate.data_generator
as
dg
class
CriteoDataset
(
dg
.
MultiSlotDataGenerator
):
def
setup
(
self
,
sparse_feature_dim
):
self
.
cont_min_
=
[
0
,
-
3
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
]
self
.
cont_max_
=
[
20
,
600
,
100
,
50
,
64000
,
500
,
100
,
50
,
500
,
10
,
10
,
10
,
50
]
self
.
cont_diff_
=
[
20
,
603
,
100
,
50
,
64000
,
500
,
100
,
50
,
500
,
10
,
10
,
10
,
50
]
self
.
hash_dim_
=
sparse_feature_dim
# here, training data are lines with line_index < train_idx_
self
.
train_idx_
=
41256555
self
.
continuous_range_
=
range
(
1
,
14
)
self
.
categorical_range_
=
range
(
14
,
40
)
def
_process_line
(
self
,
line
):
features
=
line
.
rstrip
(
'
\n
'
).
split
(
'
\t
'
)
dense_feature
=
[]
sparse_feature
=
[]
for
idx
in
self
.
continuous_range_
:
if
features
[
idx
]
==
''
:
dense_feature
.
append
(
0.0
)
else
:
dense_feature
.
append
((
float
(
features
[
idx
])
-
self
.
cont_min_
[
idx
-
1
])
/
\
self
.
cont_diff_
[
idx
-
1
])
for
idx
in
self
.
categorical_range_
:
sparse_feature
.
append
(
[
hash
(
str
(
idx
)
+
features
[
idx
])
%
self
.
hash_dim_
])
return
dense_feature
,
sparse_feature
,
[
int
(
features
[
0
])]
def
infer_reader
(
self
,
filelist
,
batch
,
buf_size
):
def
local_iter
():
for
fname
in
filelist
:
with
open
(
fname
.
strip
(),
"r"
)
as
fin
:
for
line
in
fin
:
dense_feature
,
sparse_feature
,
label
=
self
.
_process_line
(
line
)
#yield dense_feature, sparse_feature, label
yield
[
dense_feature
]
+
sparse_feature
+
[
label
]
import
paddle
batch_iter
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
local_iter
,
buf_size
=
buf_size
),
batch_size
=
batch
)
return
batch_iter
def
generate_sample
(
self
,
line
):
def
data_iter
():
dense_feature
,
sparse_feature
,
label
=
self
.
_process_line
(
line
)
feature_name
=
[
"dense_input"
]
for
idx
in
self
.
categorical_range_
:
feature_name
.
append
(
"C"
+
str
(
idx
-
13
))
feature_name
.
append
(
"label"
)
yield
zip
(
feature_name
,
[
dense_feature
]
+
sparse_feature
+
[
label
])
return
data_iter
if
__name__
==
"__main__"
:
criteo_dataset
=
CriteoDataset
()
criteo_dataset
.
setup
(
int
(
sys
.
argv
[
1
]))
criteo_dataset
.
run_from_stdin
()
python/examples/criteo_ctr/test_client.py
浏览文件 @
7bdc2e30
...
...
@@ -14,43 +14,63 @@
# pylint: disable=doc-string-missing
from
paddle_serving_client
import
Client
import
paddle
import
sys
import
os
import
time
import
criteo_reader
as
criteo
from
paddle_serving_client.metric
import
auc
import
numpy
as
np
import
sys
class
CriteoReader
(
object
):
def
__init__
(
self
,
sparse_feature_dim
):
self
.
cont_min_
=
[
0
,
-
3
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
]
self
.
cont_max_
=
[
20
,
600
,
100
,
50
,
64000
,
500
,
100
,
50
,
500
,
10
,
10
,
10
,
50
]
self
.
cont_diff_
=
[
20
,
603
,
100
,
50
,
64000
,
500
,
100
,
50
,
500
,
10
,
10
,
10
,
50
]
self
.
hash_dim_
=
sparse_feature_dim
# here, training data are lines with line_index < train_idx_
self
.
train_idx_
=
41256555
self
.
continuous_range_
=
range
(
1
,
14
)
self
.
categorical_range_
=
range
(
14
,
40
)
def
process_line
(
self
,
line
):
features
=
line
.
rstrip
(
'
\n
'
).
split
(
'
\t
'
)
dense_feature
=
[]
sparse_feature
=
[]
for
idx
in
self
.
continuous_range_
:
if
features
[
idx
]
==
''
:
dense_feature
.
append
(
0.0
)
else
:
dense_feature
.
append
((
float
(
features
[
idx
])
-
self
.
cont_min_
[
idx
-
1
])
/
\
self
.
cont_diff_
[
idx
-
1
])
for
idx
in
self
.
categorical_range_
:
sparse_feature
.
append
(
[
hash
(
str
(
idx
)
+
features
[
idx
])
%
self
.
hash_dim_
])
return
sparse_feature
py_version
=
sys
.
version_info
[
0
]
client
=
Client
()
client
.
load_client_config
(
sys
.
argv
[
1
])
client
.
connect
([
"127.0.0.1:9292"
])
reader
=
CriteoReader
(
1000001
)
batch
=
1
buf_size
=
100
dataset
=
criteo
.
CriteoDataset
()
dataset
.
setup
(
1000001
)
test_filelists
=
[
"{}/part-%d"
.
format
(
sys
.
argv
[
2
])
%
x
for
x
in
range
(
len
(
os
.
listdir
(
sys
.
argv
[
2
])))
]
reader
=
dataset
.
infer_reader
(
test_filelists
[
len
(
test_filelists
)
-
40
:],
batch
,
buf_size
)
label_list
=
[]
prob_list
=
[]
start
=
time
.
time
()
for
ei
in
range
(
1000
):
if
py_version
==
2
:
data
=
reader
().
next
()
else
:
data
=
reader
().
__next__
()
f
=
open
(
sys
.
argv
[
2
],
'r'
)
for
ei
in
range
(
10
):
data
=
reader
.
process_line
(
f
.
readline
())
feed_dict
=
{}
for
i
in
range
(
1
,
27
):
feed_dict
[
"sparse_{}"
.
format
(
i
-
1
)]
=
np
.
array
(
data
[
0
][
i
]).
reshape
(
-
1
)
feed_dict
[
"sparse_{}.lod"
.
format
(
i
-
1
)]
=
[
0
,
len
(
data
[
0
][
i
])]
feed_dict
[
"sparse_{}"
.
format
(
i
-
1
)]
=
np
.
array
(
data
[
i
-
1
]).
reshape
(
-
1
)
feed_dict
[
"sparse_{}.lod"
.
format
(
i
-
1
)]
=
[
0
,
len
(
data
[
i
-
1
])]
fetch_map
=
client
.
predict
(
feed
=
feed_dict
,
fetch
=
[
"prob"
])
print
(
fetch_map
)
end
=
time
.
time
()
print
(
end
-
start
)
f
.
close
(
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录