Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
7afc619f
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7afc619f
编写于
1月 16, 2020
作者:
M
MRXLT
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add batch predict
上级
77fbcaf5
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
248 addition
and
81 deletion
+248
-81
core/general-client/include/general_model.h
core/general-client/include/general_model.h
+28
-22
core/general-client/src/general_model.cpp
core/general-client/src/general_model.cpp
+126
-34
core/general-client/src/pybind_general_model.cpp
core/general-client/src/pybind_general_model.cpp
+47
-15
python/examples/imdb/test_client_multithread.py
python/examples/imdb/test_client_multithread.py
+1
-1
python/paddle_serving/serving_client/__init__.py
python/paddle_serving/serving_client/__init__.py
+46
-9
未找到文件。
core/general-client/include/general_model.h
浏览文件 @
7afc619f
...
...
@@ -18,9 +18,9 @@
#include <unistd.h>
#include <fstream>
#include <map>
#include <string>
#include <vector>
#include <map>
#include "core/sdk-cpp/builtin_format.pb.h"
#include "core/sdk-cpp/general_model_service.pb.h"
...
...
@@ -37,46 +37,52 @@ namespace general_model {
typedef
std
::
map
<
std
::
string
,
std
::
vector
<
float
>>
FetchedMap
;
typedef
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
vector
<
float
>
>
>
BatchFetchedMap
;
typedef
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
vector
<
float
>>>
BatchFetchedMap
;
class
PredictorClient
{
public:
PredictorClient
()
{}
~
PredictorClient
()
{}
void
init
(
const
std
::
string
&
client_conf
);
void
init
(
const
std
::
string
&
client_conf
);
void
set_predictor_conf
(
const
std
::
string
&
conf_path
,
const
std
::
string
&
conf_file
);
void
set_predictor_conf
(
const
std
::
string
&
conf_path
,
const
std
::
string
&
conf_file
);
int
create_predictor
();
std
::
vector
<
std
::
vector
<
float
>
>
predict
(
const
std
::
vector
<
std
::
vector
<
float
>
>
&
float_feed
,
const
std
::
vector
<
std
::
string
>
&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int64_t
>
>
&
int_feed
,
const
std
::
vector
<
std
::
string
>
&
int_feed_name
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
);
std
::
vector
<
std
::
vector
<
float
>
>
predict_with_profile
(
const
std
::
vector
<
std
::
vector
<
float
>
>
&
float_feed
,
const
std
::
vector
<
std
::
string
>
&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int64_t
>
>
&
int_feed
,
const
std
::
vector
<
std
::
string
>
&
int_feed_name
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
);
std
::
vector
<
std
::
vector
<
float
>>
predict
(
const
std
::
vector
<
std
::
vector
<
float
>>&
float_feed
,
const
std
::
vector
<
std
::
string
>&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>&
int_feed
,
const
std
::
vector
<
std
::
string
>&
int_feed_name
,
const
std
::
vector
<
std
::
string
>&
fetch_name
);
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>
predict_for_batch
(
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>&
float_feed_batch
,
const
std
::
vector
<
std
::
string
>&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
int64_t
>>>&
int_feed_batch
,
const
std
::
vector
<
std
::
string
>&
int_feed_name
,
const
std
::
vector
<
std
::
string
>&
fetch_name
,
const
int64_t
&
batch_size
);
std
::
vector
<
std
::
vector
<
float
>>
predict_with_profile
(
const
std
::
vector
<
std
::
vector
<
float
>>&
float_feed
,
const
std
::
vector
<
std
::
string
>&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>&
int_feed
,
const
std
::
vector
<
std
::
string
>&
int_feed_name
,
const
std
::
vector
<
std
::
string
>&
fetch_name
);
private:
PredictorApi
_api
;
Predictor
*
_predictor
;
Predictor
*
_predictor
;
std
::
string
_predictor_conf
;
std
::
string
_predictor_path
;
std
::
string
_conf_file
;
std
::
map
<
std
::
string
,
int
>
_feed_name_to_idx
;
std
::
map
<
std
::
string
,
int
>
_fetch_name_to_idx
;
std
::
map
<
std
::
string
,
std
::
string
>
_fetch_name_to_var_name
;
std
::
vector
<
std
::
vector
<
int
>
>
_shape
;
std
::
vector
<
std
::
vector
<
int
>>
_shape
;
std
::
vector
<
int
>
_type
;
};
...
...
core/general-client/src/general_model.cpp
浏览文件 @
7afc619f
...
...
@@ -12,8 +12,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <fstream>
#include "core/general-client/include/general_model.h"
#include <fstream>
#include "core/sdk-cpp/builtin_format.pb.h"
#include "core/sdk-cpp/include/common.h"
#include "core/sdk-cpp/include/predictor_sdk.h"
...
...
@@ -28,7 +28,7 @@ namespace baidu {
namespace
paddle_serving
{
namespace
general_model
{
void
PredictorClient
::
init
(
const
std
::
string
&
conf_file
)
{
void
PredictorClient
::
init
(
const
std
::
string
&
conf_file
)
{
_conf_file
=
conf_file
;
std
::
ifstream
fin
(
conf_file
);
if
(
!
fin
)
{
...
...
@@ -68,9 +68,8 @@ void PredictorClient::init(const std::string & conf_file) {
}
}
void
PredictorClient
::
set_predictor_conf
(
const
std
::
string
&
conf_path
,
const
std
::
string
&
conf_file
)
{
void
PredictorClient
::
set_predictor_conf
(
const
std
::
string
&
conf_path
,
const
std
::
string
&
conf_file
)
{
_predictor_path
=
conf_path
;
_predictor_conf
=
conf_file
;
}
...
...
@@ -83,14 +82,13 @@ int PredictorClient::create_predictor() {
_api
.
thrd_initialize
();
}
std
::
vector
<
std
::
vector
<
float
>
>
PredictorClient
::
predict
(
const
std
::
vector
<
std
::
vector
<
float
>
>
&
float_feed
,
const
std
::
vector
<
std
::
string
>
&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int64_t
>
>
&
int_feed
,
const
std
::
vector
<
std
::
string
>
&
int_feed_name
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
)
{
std
::
vector
<
std
::
vector
<
float
>
>
fetch_result
;
std
::
vector
<
std
::
vector
<
float
>>
PredictorClient
::
predict
(
const
std
::
vector
<
std
::
vector
<
float
>>
&
float_feed
,
const
std
::
vector
<
std
::
string
>
&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>
&
int_feed
,
const
std
::
vector
<
std
::
string
>
&
int_feed_name
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
)
{
std
::
vector
<
std
::
vector
<
float
>>
fetch_result
;
if
(
fetch_name
.
size
()
==
0
)
{
return
fetch_result
;
}
...
...
@@ -100,41 +98,43 @@ std::vector<std::vector<float> > PredictorClient::predict(
_predictor
=
_api
.
fetch_predictor
(
"general_model"
);
Request
req
;
std
::
vector
<
Tensor
*>
tensor_vec
;
FeedInst
*
inst
=
req
.
add_insts
();
for
(
auto
&
name
:
float_feed_name
)
{
FeedInst
*
inst
=
req
.
add_insts
();
for
(
auto
&
name
:
float_feed_name
)
{
tensor_vec
.
push_back
(
inst
->
add_tensor_array
());
}
for
(
auto
&
name
:
int_feed_name
)
{
for
(
auto
&
name
:
int_feed_name
)
{
tensor_vec
.
push_back
(
inst
->
add_tensor_array
());
}
int
vec_idx
=
0
;
for
(
auto
&
name
:
float_feed_name
)
{
for
(
auto
&
name
:
float_feed_name
)
{
int
idx
=
_feed_name_to_idx
[
name
];
Tensor
*
tensor
=
tensor_vec
[
idx
];
Tensor
*
tensor
=
tensor_vec
[
idx
];
for
(
int
j
=
0
;
j
<
_shape
[
idx
].
size
();
++
j
)
{
tensor
->
add_shape
(
_shape
[
idx
][
j
]);
}
tensor
->
set_elem_type
(
1
);
for
(
int
j
=
0
;
j
<
float_feed
[
vec_idx
].
size
();
++
j
)
{
tensor
->
add_data
(
(
char
*
)(
&
(
float_feed
[
vec_idx
][
j
])),
sizeof
(
float
));
tensor
->
add_data
(
const_cast
<
char
*>
(
reinterpret_cast
<
const
char
*>
(
&
(
float_feed
[
vec_idx
][
j
]))),
sizeof
(
float
));
}
vec_idx
++
;
}
vec_idx
=
0
;
for
(
auto
&
name
:
int_feed_name
)
{
for
(
auto
&
name
:
int_feed_name
)
{
int
idx
=
_feed_name_to_idx
[
name
];
Tensor
*
tensor
=
tensor_vec
[
idx
];
Tensor
*
tensor
=
tensor_vec
[
idx
];
for
(
int
j
=
0
;
j
<
_shape
[
idx
].
size
();
++
j
)
{
tensor
->
add_shape
(
_shape
[
idx
][
j
]);
}
tensor
->
set_elem_type
(
0
);
for
(
int
j
=
0
;
j
<
int_feed
[
vec_idx
].
size
();
++
j
)
{
tensor
->
add_data
(
(
char
*
)(
&
(
int_feed
[
vec_idx
][
j
])),
sizeof
(
int64_t
));
tensor
->
add_data
(
const_cast
<
char
*>
(
reinterpret_cast
<
const
char
*>
(
&
(
int_feed
[
vec_idx
][
j
]))),
sizeof
(
int64_t
));
}
vec_idx
++
;
}
...
...
@@ -147,7 +147,7 @@ std::vector<std::vector<float> > PredictorClient::predict(
LOG
(
ERROR
)
<<
"failed call predictor with req: "
<<
req
.
ShortDebugString
();
exit
(
-
1
);
}
else
{
for
(
auto
&
name
:
fetch_name
)
{
for
(
auto
&
name
:
fetch_name
)
{
int
idx
=
_fetch_name_to_idx
[
name
];
int
len
=
res
.
insts
(
0
).
tensor_array
(
idx
).
data_size
();
VLOG
(
3
)
<<
"fetch name: "
<<
name
;
...
...
@@ -162,8 +162,8 @@ std::vector<std::vector<float> > PredictorClient::predict(
fetch_result[name][i] = *(const float *)
res.insts(0).tensor_array(idx).data(i).c_str();
*/
fetch_result
[
idx
][
i
]
=
*
(
const
float
*
)
res
.
insts
(
0
).
tensor_array
(
idx
).
data
(
i
).
c_str
();
fetch_result
[
idx
][
i
]
=
*
(
const
float
*
)
res
.
insts
(
0
).
tensor_array
(
idx
).
data
(
i
).
c_str
();
}
}
}
...
...
@@ -171,13 +171,105 @@ std::vector<std::vector<float> > PredictorClient::predict(
return
fetch_result
;
}
std
::
vector
<
std
::
vector
<
float
>
>
PredictorClient
::
predict_with_profile
(
const
std
::
vector
<
std
::
vector
<
float
>
>
&
float_feed
,
const
std
::
vector
<
std
::
string
>
&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int64_t
>
>
&
int_feed
,
const
std
::
vector
<
std
::
string
>
&
int_feed_name
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
)
{
std
::
vector
<
std
::
vector
<
float
>
>
res
;
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>
PredictorClient
::
predict_for_batch
(
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>
&
float_feed_batch
,
const
std
::
vector
<
std
::
string
>
&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
int64_t
>>>
&
int_feed_batch
,
const
std
::
vector
<
std
::
string
>
&
int_feed_name
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
,
const
int64_t
&
batch_size
)
{
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>
fetch_result_batch
;
if
(
fetch_name
.
size
()
==
0
)
{
return
fetch_result_batch
;
}
fetch_result_batch
.
resize
(
batch_size
);
int
fetch_name_num
=
fetch_name
.
size
();
for
(
int
bi
=
0
;
bi
<
batch_size
;
bi
++
)
{
fetch_result_batch
[
bi
].
resize
(
fetch_name_num
);
}
_api
.
thrd_clear
();
_predictor
=
_api
.
fetch_predictor
(
"general_model"
);
Request
req
;
//
for
(
int
bi
=
0
;
bi
<
batch_size
;
bi
++
)
{
std
::
vector
<
Tensor
*>
tensor_vec
;
FeedInst
*
inst
=
req
.
add_insts
();
std
::
vector
<
std
::
vector
<
float
>>
float_feed
=
float_feed_batch
[
bi
];
std
::
vector
<
std
::
vector
<
int64_t
>>
int_feed
=
int_feed_batch
[
bi
];
for
(
auto
&
name
:
float_feed_name
)
{
tensor_vec
.
push_back
(
inst
->
add_tensor_array
());
}
for
(
auto
&
name
:
int_feed_name
)
{
tensor_vec
.
push_back
(
inst
->
add_tensor_array
());
}
int
vec_idx
=
0
;
for
(
auto
&
name
:
float_feed_name
)
{
int
idx
=
_feed_name_to_idx
[
name
];
Tensor
*
tensor
=
tensor_vec
[
idx
];
for
(
int
j
=
0
;
j
<
_shape
[
idx
].
size
();
++
j
)
{
tensor
->
add_shape
(
_shape
[
idx
][
j
]);
}
tensor
->
set_elem_type
(
1
);
for
(
int
j
=
0
;
j
<
float_feed
[
vec_idx
].
size
();
++
j
)
{
tensor
->
add_data
(
const_cast
<
char
*>
(
reinterpret_cast
<
const
char
*>
(
&
(
float_feed
[
vec_idx
][
j
]))),
sizeof
(
float
));
}
vec_idx
++
;
}
vec_idx
=
0
;
for
(
auto
&
name
:
int_feed_name
)
{
int
idx
=
_feed_name_to_idx
[
name
];
Tensor
*
tensor
=
tensor_vec
[
idx
];
for
(
int
j
=
0
;
j
<
_shape
[
idx
].
size
();
++
j
)
{
tensor
->
add_shape
(
_shape
[
idx
][
j
]);
}
tensor
->
set_elem_type
(
0
);
for
(
int
j
=
0
;
j
<
int_feed
[
vec_idx
].
size
();
++
j
)
{
tensor
->
add_data
(
const_cast
<
char
*>
(
reinterpret_cast
<
const
char
*>
(
&
(
int_feed
[
vec_idx
][
j
]))),
sizeof
(
int64_t
));
}
vec_idx
++
;
}
}
Response
res
;
res
.
Clear
();
if
(
_predictor
->
inference
(
&
req
,
&
res
)
!=
0
)
{
LOG
(
ERROR
)
<<
"failed call predictor with req: "
<<
req
.
ShortDebugString
();
exit
(
-
1
);
}
else
{
for
(
int
bi
=
0
;
bi
<
batch_size
;
bi
++
)
{
for
(
auto
&
name
:
fetch_name
)
{
int
idx
=
_fetch_name_to_idx
[
name
];
int
len
=
res
.
insts
(
0
).
tensor_array
(
idx
).
data_size
();
VLOG
(
3
)
<<
"fetch name: "
<<
name
;
VLOG
(
3
)
<<
"tensor data size: "
<<
len
;
fetch_result_batch
[
bi
][
idx
].
resize
(
len
);
for
(
int
i
=
0
;
i
<
len
;
++
i
)
{
fetch_result_batch
[
bi
][
idx
][
i
]
=
*
(
const
float
*
)
res
.
insts
(
0
).
tensor_array
(
idx
).
data
(
i
).
c_str
();
}
}
}
}
return
fetch_result_batch
;
}
std
::
vector
<
std
::
vector
<
float
>>
PredictorClient
::
predict_with_profile
(
const
std
::
vector
<
std
::
vector
<
float
>>
&
float_feed
,
const
std
::
vector
<
std
::
string
>
&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>
&
int_feed
,
const
std
::
vector
<
std
::
string
>
&
int_feed_name
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
)
{
std
::
vector
<
std
::
vector
<
float
>>
res
;
return
res
;
}
...
...
core/general-client/src/pybind_general_model.cpp
浏览文件 @
7afc619f
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <Python.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <unordered_map>
#include "core/general-client/include/general_model.h"
#include <pybind11/stl.h>
namespace
py
=
pybind11
;
using
baidu
::
paddle_serving
::
general_model
::
FetchedMap
;
...
...
@@ -19,28 +32,47 @@ PYBIND11_MODULE(serving_client, m) {
py
::
class_
<
PredictorClient
>
(
m
,
"PredictorClient"
,
py
::
buffer_protocol
())
.
def
(
py
::
init
())
.
def
(
"init"
,
[](
PredictorClient
&
self
,
const
std
::
string
&
conf
)
{
[](
PredictorClient
&
self
,
const
std
::
string
&
conf
)
{
self
.
init
(
conf
);
})
.
def
(
"set_predictor_conf"
,
[](
PredictorClient
&
self
,
const
std
::
string
&
conf_path
,
const
std
::
string
&
conf_file
)
{
[](
PredictorClient
&
self
,
const
std
::
string
&
conf_path
,
const
std
::
string
&
conf_file
)
{
self
.
set_predictor_conf
(
conf_path
,
conf_file
);
})
.
def
(
"create_predictor"
,
[](
PredictorClient
&
self
)
{
self
.
create_predictor
();
})
[](
PredictorClient
&
self
)
{
self
.
create_predictor
();
})
.
def
(
"predict"
,
[](
PredictorClient
&
self
,
const
std
::
vector
<
std
::
vector
<
float
>
>
&
float_feed
,
const
std
::
vector
<
std
::
string
>
&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int64_t
>
>
&
int_feed
,
const
std
::
vector
<
std
::
string
>
&
int_feed_name
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
)
{
const
std
::
vector
<
std
::
vector
<
float
>>
&
float_feed
,
const
std
::
vector
<
std
::
string
>
&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>
&
int_feed
,
const
std
::
vector
<
std
::
string
>
&
int_feed_name
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
)
{
return
self
.
predict
(
float_feed
,
float_feed_name
,
int_feed
,
int_feed_name
,
fetch_name
);
})
return
self
.
predict
(
float_feed
,
float_feed_name
,
int_feed
,
int_feed_name
,
fetch_name
);
.
def
(
"predict_for_batch"
,
[](
PredictorClient
&
self
,
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>
&
float_feed_batch
,
const
std
::
vector
<
std
::
string
>
&
float_feed_name
,
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
int64_t
>>>
&
int_feed_batch
,
const
std
::
vector
<
std
::
string
>
&
int_feed_name
,
const
std
::
vector
<
std
::
string
>
&
fetch_name
,
const
int64_t
&
batch_size
)
{
return
self
.
predict_for_batch
(
float_feed_batch
,
float_feed_name
,
int_feed_batch
,
int_feed_name
,
fetch_name
,
batch_size
);
});
}
...
...
python/examples/imdb/test_client_multithread.py
浏览文件 @
7afc619f
...
...
@@ -15,7 +15,7 @@
from
paddle_serving
import
Client
import
sys
import
subprocess
from
multiprocessing
import
Pool
,
Queue
from
multiprocessing
import
Pool
import
time
...
...
python/paddle_serving/serving_client/__init__.py
浏览文件 @
7afc619f
...
...
@@ -19,6 +19,7 @@ import time
int_type
=
0
float_type
=
1
class
SDKConfig
(
object
):
def
__init__
(
self
):
self
.
sdk_desc
=
sdk
.
SDKConf
()
...
...
@@ -37,7 +38,8 @@ class SDKConfig(object):
variant_desc
=
sdk
.
VariantConf
()
variant_desc
.
tag
=
"var1"
variant_desc
.
naming_conf
.
cluster
=
"list://{}"
.
format
(
":"
.
join
(
self
.
endpoints
))
variant_desc
.
naming_conf
.
cluster
=
"list://{}"
.
format
(
":"
.
join
(
self
.
endpoints
))
predictor_desc
.
variants
.
extend
([
variant_desc
])
...
...
@@ -50,7 +52,7 @@ class SDKConfig(object):
self
.
sdk_desc
.
default_variant_conf
.
connection_conf
.
hedge_request_timeout_ms
=
-
1
self
.
sdk_desc
.
default_variant_conf
.
connection_conf
.
hedge_fetch_retry_count
=
2
self
.
sdk_desc
.
default_variant_conf
.
connection_conf
.
connection_type
=
"pooled"
self
.
sdk_desc
.
default_variant_conf
.
naming_conf
.
cluster_filter_strategy
=
"Default"
self
.
sdk_desc
.
default_variant_conf
.
naming_conf
.
load_balance_strategy
=
"la"
...
...
@@ -114,8 +116,7 @@ class Client(object):
predictor_file
=
"%s_predictor.conf"
%
timestamp
with
open
(
predictor_path
+
predictor_file
,
"w"
)
as
fout
:
fout
.
write
(
sdk_desc
)
self
.
client_handle_
.
set_predictor_conf
(
predictor_path
,
predictor_file
)
self
.
client_handle_
.
set_predictor_conf
(
predictor_path
,
predictor_file
)
self
.
client_handle_
.
create_predictor
()
def
get_feed_names
(
self
):
...
...
@@ -145,13 +146,49 @@ class Client(object):
fetch_names
.
append
(
key
)
result
=
self
.
client_handle_
.
predict
(
float_slot
,
float_feed_names
,
int_slot
,
int_feed_names
,
fetch_names
)
float_slot
,
float_feed_names
,
int_slot
,
int_feed_names
,
fetch_names
)
result_map
=
{}
for
i
,
name
in
enumerate
(
fetch_names
):
result_map
[
name
]
=
result
[
i
]
return
result_map
def
predict_for_batch
(
self
,
feed_batch
=
[],
fetch
=
[]):
batch_size
=
len
(
feed_batch
)
int_slot_batch
=
[]
float_slot_batch
=
[]
int_feed_names
=
[]
float_feed_names
=
[]
fetch_names
=
[]
for
feed
in
feed_batch
:
int_slot
=
[]
float_slot
=
[]
for
key
in
feed
:
if
key
not
in
self
.
feed_names_
:
continue
if
self
.
feed_types_
[
key
]
==
int_type
:
int_feed_names
.
append
(
key
)
int_slot
.
append
(
feed
[
key
])
elif
self
.
feed_types_
[
key
]
==
float_type
:
float_feed_names
.
append
(
key
)
float_slot
.
append
(
feed
[
key
])
int_slot_batch
.
append
(
int_slot
)
float_slot_batch
.
append
(
float_slot
)
for
key
in
fetch
:
if
key
in
self
.
fetch_names_
:
fetch_names
.
append
(
key
)
result_batch
=
self
.
client_handle_
.
predict_for_batch
(
float_slot_batch
,
float_feed_names
,
int_slot_batch
,
int_feed_names
,
fetch_names
,
batch_size
)
result_map_batch
=
[]
for
result
in
result_batch
:
result_map
=
{}
for
i
,
name
in
enumerate
(
fetch_names
):
result_map
[
name
]
=
result
[
i
]
result_map_batch
.
append
(
result_map
)
return
result_map_batch
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录