Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
74465337
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
74465337
编写于
2月 15, 2020
作者:
M
MRXLT
提交者:
GitHub
2月 15, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #171 from guru4elephant/add_go
Add go
上级
310c1842
f17e9d74
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
969 addition
and
11 deletion
+969
-11
core/general-server/op/general_text_infer_op.cpp
core/general-server/op/general_text_infer_op.cpp
+150
-0
core/general-server/op/general_text_infer_op.h
core/general-server/op/general_text_infer_op.h
+45
-0
core/general-server/op/general_text_reader_op.cpp
core/general-server/op/general_text_reader_op.cpp
+166
-0
core/general-server/op/general_text_reader_op.h
core/general-server/op/general_text_reader_op.h
+62
-0
core/general-server/proto/general_model_service.proto
core/general-server/proto/general_model_service.proto
+4
-2
core/sdk-cpp/proto/general_model_service.proto
core/sdk-cpp/proto/general_model_service.proto
+5
-3
go/client_app/acc.go
go/client_app/acc.go
+50
-0
go/client_app/imdb_client.go
go/client_app/imdb_client.go
+79
-0
go/proto/general_model_config.pb.go
go/proto/general_model_config.pb.go
+237
-0
go/serving_client/serving_client_api.go
go/serving_client/serving_client_api.go
+165
-0
python/paddle_serving_server/__init__.py
python/paddle_serving_server/__init__.py
+6
-6
未找到文件。
core/general-server/op/general_text_infer_op.cpp
0 → 100644
浏览文件 @
74465337
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include "core/general-server/op/general_text_infer_op.h"
#include "core/general-server/op/general_infer_op.h"
#include "core/general-server/op/general_text_reader_op.h"
#include "core/general-server/op/general_reader_op.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
using
baidu
::
paddle_serving
::
serving
::
GENERAL_MODEL_NAME
;
using
baidu
::
paddle_serving
::
Timer
;
using
baidu
::
paddle_serving
::
predictor
::
MempoolWrapper
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Tensor
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Response
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Request
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
FetchInst
;
using
baidu
::
paddle_serving
::
predictor
::
InferManager
;
using
baidu
::
paddle_serving
::
predictor
::
PaddleGeneralModelConfig
;
int
GeneralTextInferOp
::
inference
()
{
const
GeneralTextReaderOutput
*
reader_out
=
get_depend_argument
<
GeneralTextReaderOutput
>
(
"general_text_reader_op"
);
if
(
!
reader_out
)
{
LOG
(
ERROR
)
<<
"Failed mutable depended argument, op:"
<<
"general_text_reader_op"
;
return
-
1
;
}
int
reader_status
=
reader_out
->
reader_status
;
if
(
reader_status
!=
0
)
{
LOG
(
ERROR
)
<<
"Read request wrong."
;
return
-
1
;
}
const
TensorVector
*
in
=
&
reader_out
->
tensor_vector
;
TensorVector
*
out
=
butil
::
get_object
<
TensorVector
>
();
int
batch_size
=
0
;
if
(
in
->
at
(
0
).
lod
.
size
()
==
1
)
{
batch_size
=
in
->
at
(
0
).
lod
[
0
].
size
()
-
1
;
}
else
{
batch_size
=
in
->
at
(
0
).
shape
[
0
];
}
VLOG
(
2
)
<<
"infer batch size: "
<<
batch_size
;
// infer
Timer
timeline
;
double
infer_time
=
0.0
;
timeline
.
Start
();
if
(
InferManager
::
instance
().
infer
(
GENERAL_MODEL_NAME
,
in
,
out
,
batch_size
))
{
LOG
(
ERROR
)
<<
"Failed do infer in fluid model: "
<<
GENERAL_MODEL_NAME
;
return
-
1
;
}
timeline
.
Pause
();
infer_time
=
timeline
.
ElapsedUS
();
const
Request
*
req
=
dynamic_cast
<
const
Request
*>
(
get_request_message
());
VLOG
(
2
)
<<
"start to call load general model_conf op"
;
baidu
::
paddle_serving
::
predictor
::
Resource
&
resource
=
baidu
::
paddle_serving
::
predictor
::
Resource
::
instance
();
VLOG
(
2
)
<<
"get resource pointer done."
;
std
::
shared_ptr
<
PaddleGeneralModelConfig
>
model_config
=
resource
.
get_general_model_config
();
std
::
vector
<
int
>
fetch_index
;
fetch_index
.
resize
(
req
->
fetch_var_names_size
());
for
(
int
i
=
0
;
i
<
req
->
fetch_var_names_size
();
++
i
)
{
fetch_index
[
i
]
=
model_config
->
_fetch_alias_name_to_index
[
req
->
fetch_var_names
(
i
)];
}
// response inst with only fetch_var_names
Response
*
res
=
mutable_data
<
Response
>
();
res
->
set_mean_infer_us
(
infer_time
);
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
FetchInst
*
fetch_inst
=
res
->
add_insts
();
for
(
auto
&
idx
:
fetch_index
)
{
Tensor
*
tensor
=
fetch_inst
->
add_tensor_array
();
// currently only response float tensor or lod_tensor
tensor
->
set_elem_type
(
1
);
if
(
model_config
->
_is_lod_fetch
[
idx
])
{
VLOG
(
2
)
<<
"out["
<<
idx
<<
" is lod_tensor"
;
tensor
->
add_shape
(
-
1
);
}
else
{
VLOG
(
2
)
<<
"out["
<<
idx
<<
"] is tensor"
;
for
(
int
k
=
1
;
k
<
out
->
at
(
idx
).
shape
.
size
();
++
k
)
{
VLOG
(
2
)
<<
"shape["
<<
k
-
1
<<
"]: "
<<
out
->
at
(
idx
).
shape
[
k
];
tensor
->
add_shape
(
out
->
at
(
idx
).
shape
[
k
]);
}
}
}
}
int
var_idx
=
0
;
for
(
auto
&
idx
:
fetch_index
)
{
float
*
data_ptr
=
static_cast
<
float
*>
(
out
->
at
(
idx
).
data
.
data
());
int
cap
=
1
;
for
(
int
j
=
1
;
j
<
out
->
at
(
idx
).
shape
.
size
();
++
j
)
{
cap
*=
out
->
at
(
idx
).
shape
[
j
];
}
if
(
model_config
->
_is_lod_fetch
[
idx
])
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
for
(
int
k
=
out
->
at
(
idx
).
lod
[
0
][
j
];
k
<
out
->
at
(
idx
).
lod
[
0
][
j
+
1
];
k
++
)
{
res
->
mutable_insts
(
j
)
->
mutable_tensor_array
(
var_idx
)
->
add_float_data
(
data_ptr
[
k
]);
}
}
}
else
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
for
(
int
k
=
j
*
cap
;
k
<
(
j
+
1
)
*
cap
;
++
k
)
{
res
->
mutable_insts
(
j
)
->
mutable_tensor_array
(
var_idx
)
->
add_float_data
(
data_ptr
[
k
]);
}
}
}
var_idx
++
;
}
return
0
;
}
DEFINE_OP
(
GeneralTextInferOp
);
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
core/general-server/op/general_text_infer_op.h
0 → 100644
浏览文件 @
74465337
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
#include "paddle_inference_api.h" // NOLINT
#endif
#include "core/general-server/general_model_service.pb.h"
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
class
GeneralTextInferOp
:
public
baidu
::
paddle_serving
::
predictor
::
OpWithChannel
<
baidu
::
paddle_serving
::
predictor
::
general_model
::
Response
>
{
public:
typedef
std
::
vector
<
paddle
::
PaddleTensor
>
TensorVector
;
DECLARE_OP
(
GeneralTextInferOp
);
int
inference
();
};
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
core/general-server/op/general_text_reader_op.cpp
0 → 100644
浏览文件 @
74465337
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include "core/general-server/op/general_text_reader_op.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
using
baidu
::
paddle_serving
::
predictor
::
MempoolWrapper
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Tensor
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Request
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
FeedInst
;
using
baidu
::
paddle_serving
::
predictor
::
PaddleGeneralModelConfig
;
int
GeneralTextReaderOp
::
inference
()
{
// reade request from client
const
Request
*
req
=
dynamic_cast
<
const
Request
*>
(
get_request_message
());
int
batch_size
=
req
->
insts_size
();
int
input_var_num
=
0
;
std
::
vector
<
int64_t
>
elem_type
;
std
::
vector
<
int64_t
>
elem_size
;
std
::
vector
<
int64_t
>
capacity
;
GeneralTextReaderOutput
*
res
=
mutable_data
<
GeneralTextReaderOutput
>
();
TensorVector
*
in
=
&
res
->
tensor_vector
;
if
(
!
res
)
{
LOG
(
ERROR
)
<<
"Failed get op tls reader object output"
;
}
if
(
batch_size
<=
0
)
{
res
->
reader_status
=
-
1
;
return
0
;
}
int
var_num
=
req
->
insts
(
0
).
tensor_array_size
();
VLOG
(
2
)
<<
"var num: "
<<
var_num
;
// read config
VLOG
(
2
)
<<
"start to call load general model_conf op"
;
baidu
::
paddle_serving
::
predictor
::
Resource
&
resource
=
baidu
::
paddle_serving
::
predictor
::
Resource
::
instance
();
VLOG
(
2
)
<<
"get resource pointer done."
;
std
::
shared_ptr
<
PaddleGeneralModelConfig
>
model_config
=
resource
.
get_general_model_config
();
VLOG
(
2
)
<<
"print general model config done."
;
elem_type
.
resize
(
var_num
);
elem_size
.
resize
(
var_num
);
capacity
.
resize
(
var_num
);
for
(
int
i
=
0
;
i
<
var_num
;
++
i
)
{
paddle
::
PaddleTensor
lod_tensor
;
elem_type
[
i
]
=
req
->
insts
(
0
).
tensor_array
(
i
).
elem_type
();
VLOG
(
2
)
<<
"var["
<<
i
<<
"] has elem type: "
<<
elem_type
[
i
];
if
(
elem_type
[
i
]
==
0
)
{
// int64
elem_size
[
i
]
=
sizeof
(
int64_t
);
lod_tensor
.
dtype
=
paddle
::
PaddleDType
::
INT64
;
}
else
{
elem_size
[
i
]
=
sizeof
(
float
);
lod_tensor
.
dtype
=
paddle
::
PaddleDType
::
FLOAT32
;
}
if
(
req
->
insts
(
0
).
tensor_array
(
i
).
shape
(
0
)
==
-
1
)
{
lod_tensor
.
lod
.
resize
(
1
);
lod_tensor
.
lod
[
0
].
push_back
(
0
);
VLOG
(
2
)
<<
"var["
<<
i
<<
"] is lod_tensor"
;
}
else
{
lod_tensor
.
shape
.
push_back
(
batch_size
);
capacity
[
i
]
=
1
;
for
(
int
k
=
0
;
k
<
req
->
insts
(
0
).
tensor_array
(
i
).
shape_size
();
++
k
)
{
int
dim
=
req
->
insts
(
0
).
tensor_array
(
i
).
shape
(
k
);
VLOG
(
2
)
<<
"shape for var["
<<
i
<<
"]: "
<<
dim
;
capacity
[
i
]
*=
dim
;
lod_tensor
.
shape
.
push_back
(
dim
);
}
VLOG
(
2
)
<<
"var["
<<
i
<<
"] is tensor, capacity: "
<<
capacity
[
i
];
}
lod_tensor
.
name
=
model_config
->
_feed_name
[
i
];
in
->
push_back
(
lod_tensor
);
}
for
(
int
i
=
0
;
i
<
var_num
;
++
i
)
{
if
(
in
->
at
(
i
).
lod
.
size
()
==
1
)
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
const
Tensor
&
tensor
=
req
->
insts
(
j
).
tensor_array
(
i
);
int
data_len
=
tensor
.
int_data_size
();
int
cur_len
=
in
->
at
(
i
).
lod
[
0
].
back
();
in
->
at
(
i
).
lod
[
0
].
push_back
(
cur_len
+
data_len
);
}
in
->
at
(
i
).
data
.
Resize
(
in
->
at
(
i
).
lod
[
0
].
back
()
*
elem_size
[
i
]);
in
->
at
(
i
).
shape
=
{
in
->
at
(
i
).
lod
[
0
].
back
(),
1
};
VLOG
(
2
)
<<
"var["
<<
i
<<
"] is lod_tensor and len="
<<
in
->
at
(
i
).
lod
[
0
].
back
();
}
else
{
in
->
at
(
i
).
data
.
Resize
(
batch_size
*
capacity
[
i
]
*
elem_size
[
i
]);
VLOG
(
2
)
<<
"var["
<<
i
<<
"] is tensor and capacity="
<<
batch_size
*
capacity
[
i
];
}
}
for
(
int
i
=
0
;
i
<
var_num
;
++
i
)
{
if
(
elem_type
[
i
]
==
0
)
{
int64_t
*
dst_ptr
=
static_cast
<
int64_t
*>
(
in
->
at
(
i
).
data
.
data
());
int
offset
=
0
;
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
for
(
int
k
=
0
;
k
<
req
->
insts
(
j
).
tensor_array
(
i
).
int_data_size
();
++
k
)
{
dst_ptr
[
offset
+
k
]
=
req
->
insts
(
j
).
tensor_array
(
i
).
int_data
(
k
);
}
if
(
in
->
at
(
i
).
lod
.
size
()
==
1
)
{
offset
=
in
->
at
(
i
).
lod
[
0
][
j
+
1
];
}
else
{
offset
+=
capacity
[
i
];
}
}
}
else
{
float
*
dst_ptr
=
static_cast
<
float
*>
(
in
->
at
(
i
).
data
.
data
());
int
offset
=
0
;
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
for
(
int
k
=
0
;
k
<
req
->
insts
(
j
).
tensor_array
(
i
).
int_data_size
();
++
k
)
{
dst_ptr
[
offset
+
k
]
=
req
->
insts
(
j
).
tensor_array
(
i
).
int_data
(
k
);
}
if
(
in
->
at
(
i
).
lod
.
size
()
==
1
)
{
offset
=
in
->
at
(
i
).
lod
[
0
][
j
+
1
];
}
else
{
offset
+=
capacity
[
i
];
}
}
}
}
VLOG
(
2
)
<<
"read data from client success"
;
return
0
;
}
DEFINE_OP
(
GeneralTextReaderOp
);
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
core/general-server/op/general_text_reader_op.h
0 → 100644
浏览文件 @
74465337
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
#include "paddle_inference_api.h" // NOLINT
#endif
#include <string>
#include "core/predictor/framework/resource.h"
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/load_general_model_service.pb.h"
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
struct
GeneralTextReaderOutput
{
std
::
vector
<
paddle
::
PaddleTensor
>
tensor_vector
;
int
reader_status
=
0
;
void
Clear
()
{
size_t
tensor_count
=
tensor_vector
.
size
();
for
(
size_t
ti
=
0
;
ti
<
tensor_count
;
++
ti
)
{
tensor_vector
[
ti
].
shape
.
clear
();
}
tensor_vector
.
clear
();
}
std
::
string
ShortDebugString
()
const
{
return
"Not implemented!"
;
}
};
class
GeneralTextReaderOp
:
public
baidu
::
paddle_serving
::
predictor
::
OpWithChannel
<
GeneralTextReaderOutput
>
{
public:
typedef
std
::
vector
<
paddle
::
PaddleTensor
>
TensorVector
;
DECLARE_OP
(
GeneralTextReaderOp
);
int
inference
();
};
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
core/general-server/proto/general_model_service.proto
浏览文件 @
74465337
...
...
@@ -21,8 +21,10 @@ option cc_generic_services = true;
message
Tensor
{
repeated
bytes
data
=
1
;
optional
int32
elem_type
=
2
;
repeated
int32
shape
=
3
;
repeated
int32
int_data
=
2
;
repeated
float
float_data
=
3
;
optional
int32
elem_type
=
4
;
repeated
int32
shape
=
5
;
};
message
FeedInst
{
...
...
core/sdk-cpp/proto/general_model_service.proto
浏览文件 @
74465337
...
...
@@ -20,9 +20,11 @@ package baidu.paddle_serving.predictor.general_model;
option
cc_generic_services
=
true
;
message
Tensor
{
repeated
bytes
data
=
1
;
optional
int32
elem_type
=
2
;
repeated
int32
shape
=
3
;
repeated
bytes
data
=
1
;
// most general format
repeated
int32
int_data
=
2
;
// for simple debug only
repeated
float
float_data
=
3
;
// for simple debug only
optional
int32
elem_type
=
4
;
// support int64, float32
repeated
int32
shape
=
5
;
};
message
FeedInst
{
...
...
go/client_app/acc.go
0 → 100644
浏览文件 @
74465337
package
main
import
(
"io"
"os"
"fmt"
"bufio"
"strings"
"strconv"
)
func
main
()
{
score_file
:=
os
.
Args
[
1
]
fi
,
err
:=
os
.
Open
(
score_file
)
if
err
!=
nil
{
fmt
.
Print
(
err
)
}
defer
fi
.
Close
()
br
:=
bufio
.
NewReader
(
fi
)
total
:=
int
(
0
)
acc
:=
int
(
0
)
for
{
line
,
err
:=
br
.
ReadString
(
'\n'
)
if
err
==
io
.
EOF
{
break
}
line
=
strings
.
Trim
(
line
,
"
\n
"
)
s
:=
strings
.
Split
(
line
,
"
\t
"
)
prob_str
:=
strings
.
Trim
(
s
[
0
],
" "
)
label_str
:=
strings
.
Trim
(
s
[
1
],
" "
)
prob
,
err
:=
strconv
.
ParseFloat
(
prob_str
,
32
)
if
err
!=
nil
{
panic
(
err
)
}
label
,
err
:=
strconv
.
ParseFloat
(
label_str
,
32
)
if
err
!=
nil
{
panic
(
err
)
}
if
(
prob
-
0.5
)
*
(
label
-
0.5
)
>
0
{
acc
++
}
total
++
}
fmt
.
Println
(
"total num: "
,
total
)
fmt
.
Println
(
"acc num: "
,
acc
)
fmt
.
Println
(
"acc: "
,
float32
(
acc
)
/
float32
(
total
))
}
\ No newline at end of file
go/client_app/imdb_client.go
0 → 100644
浏览文件 @
74465337
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package
main
import
(
"io"
"fmt"
"strings"
"bufio"
"strconv"
"os"
"serving_client"
)
func
main
()
{
var
config_file_path
string
config_file_path
=
os
.
Args
[
1
]
handle
:=
serving_client
.
LoadModelConfig
(
config_file_path
)
handle
=
serving_client
.
Connect
(
"127.0.0.1"
,
"9292"
,
handle
)
test_file_path
:=
os
.
Args
[
2
]
fi
,
err
:=
os
.
Open
(
test_file_path
)
if
err
!=
nil
{
fmt
.
Print
(
err
)
}
defer
fi
.
Close
()
br
:=
bufio
.
NewReader
(
fi
)
fetch
:=
[]
string
{
"cost"
,
"acc"
,
"prediction"
}
var
result
map
[
string
][]
float32
for
{
line
,
err
:=
br
.
ReadString
(
'\n'
)
if
err
==
io
.
EOF
{
break
}
line
=
strings
.
Trim
(
line
,
"
\n
"
)
var
words
=
[]
int64
{}
s
:=
strings
.
Split
(
line
,
" "
)
value
,
err
:=
strconv
.
Atoi
(
s
[
0
])
var
feed_int_map
map
[
string
][]
int64
for
_
,
v
:=
range
s
[
1
:
value
+
1
]
{
int_v
,
_
:=
strconv
.
Atoi
(
v
)
words
=
append
(
words
,
int64
(
int_v
))
}
label
,
err
:=
strconv
.
Atoi
(
s
[
len
(
s
)
-
1
])
if
err
!=
nil
{
panic
(
err
)
}
feed_int_map
=
map
[
string
][]
int64
{}
feed_int_map
[
"words"
]
=
words
feed_int_map
[
"label"
]
=
[]
int64
{
int64
(
label
)}
result
=
serving_client
.
Predict
(
handle
,
feed_int_map
,
fetch
)
fmt
.
Println
(
result
[
"prediction"
][
1
],
"
\t
"
,
int64
(
label
))
}
}
\ No newline at end of file
go/proto/general_model_config.pb.go
0 → 100644
浏览文件 @
74465337
// Code generated by protoc-gen-go. DO NOT EDIT.
// source: general_model_config.proto
package
baidu_paddle_serving_configure
import
(
fmt
"fmt"
proto
"github.com/golang/protobuf/proto"
math
"math"
)
// Reference imports to suppress errors if they are not otherwise used.
var
_
=
proto
.
Marshal
var
_
=
fmt
.
Errorf
var
_
=
math
.
Inf
// This is a compile-time assertion to ensure that this generated file
// is compatible with the proto package it is being compiled against.
// A compilation error at this line likely means your copy of the
// proto package needs to be updated.
const
_
=
proto
.
ProtoPackageIsVersion3
// please upgrade the proto package
type
FeedVar
struct
{
Name
*
string
`protobuf:"bytes,1,opt,name=name" json:"name,omitempty"`
AliasName
*
string
`protobuf:"bytes,2,opt,name=alias_name,json=aliasName" json:"alias_name,omitempty"`
IsLodTensor
*
bool
`protobuf:"varint,3,opt,name=is_lod_tensor,json=isLodTensor,def=0" json:"is_lod_tensor,omitempty"`
FeedType
*
int32
`protobuf:"varint,4,opt,name=feed_type,json=feedType,def=0" json:"feed_type,omitempty"`
Shape
[]
int32
`protobuf:"varint,5,rep,name=shape" json:"shape,omitempty"`
XXX_NoUnkeyedLiteral
struct
{}
`json:"-"`
XXX_unrecognized
[]
byte
`json:"-"`
XXX_sizecache
int32
`json:"-"`
}
func
(
m
*
FeedVar
)
Reset
()
{
*
m
=
FeedVar
{}
}
func
(
m
*
FeedVar
)
String
()
string
{
return
proto
.
CompactTextString
(
m
)
}
func
(
*
FeedVar
)
ProtoMessage
()
{}
func
(
*
FeedVar
)
Descriptor
()
([]
byte
,
[]
int
)
{
return
fileDescriptor_efa52beffa29d37a
,
[]
int
{
0
}
}
func
(
m
*
FeedVar
)
XXX_Unmarshal
(
b
[]
byte
)
error
{
return
xxx_messageInfo_FeedVar
.
Unmarshal
(
m
,
b
)
}
func
(
m
*
FeedVar
)
XXX_Marshal
(
b
[]
byte
,
deterministic
bool
)
([]
byte
,
error
)
{
return
xxx_messageInfo_FeedVar
.
Marshal
(
b
,
m
,
deterministic
)
}
func
(
m
*
FeedVar
)
XXX_Merge
(
src
proto
.
Message
)
{
xxx_messageInfo_FeedVar
.
Merge
(
m
,
src
)
}
func
(
m
*
FeedVar
)
XXX_Size
()
int
{
return
xxx_messageInfo_FeedVar
.
Size
(
m
)
}
func
(
m
*
FeedVar
)
XXX_DiscardUnknown
()
{
xxx_messageInfo_FeedVar
.
DiscardUnknown
(
m
)
}
var
xxx_messageInfo_FeedVar
proto
.
InternalMessageInfo
const
Default_FeedVar_IsLodTensor
bool
=
false
const
Default_FeedVar_FeedType
int32
=
0
func
(
m
*
FeedVar
)
GetName
()
string
{
if
m
!=
nil
&&
m
.
Name
!=
nil
{
return
*
m
.
Name
}
return
""
}
func
(
m
*
FeedVar
)
GetAliasName
()
string
{
if
m
!=
nil
&&
m
.
AliasName
!=
nil
{
return
*
m
.
AliasName
}
return
""
}
func
(
m
*
FeedVar
)
GetIsLodTensor
()
bool
{
if
m
!=
nil
&&
m
.
IsLodTensor
!=
nil
{
return
*
m
.
IsLodTensor
}
return
Default_FeedVar_IsLodTensor
}
func
(
m
*
FeedVar
)
GetFeedType
()
int32
{
if
m
!=
nil
&&
m
.
FeedType
!=
nil
{
return
*
m
.
FeedType
}
return
Default_FeedVar_FeedType
}
func
(
m
*
FeedVar
)
GetShape
()
[]
int32
{
if
m
!=
nil
{
return
m
.
Shape
}
return
nil
}
type
FetchVar
struct
{
Name
*
string
`protobuf:"bytes,1,opt,name=name" json:"name,omitempty"`
AliasName
*
string
`protobuf:"bytes,2,opt,name=alias_name,json=aliasName" json:"alias_name,omitempty"`
IsLodTensor
*
bool
`protobuf:"varint,3,opt,name=is_lod_tensor,json=isLodTensor,def=0" json:"is_lod_tensor,omitempty"`
Shape
[]
int32
`protobuf:"varint,4,rep,name=shape" json:"shape,omitempty"`
XXX_NoUnkeyedLiteral
struct
{}
`json:"-"`
XXX_unrecognized
[]
byte
`json:"-"`
XXX_sizecache
int32
`json:"-"`
}
func
(
m
*
FetchVar
)
Reset
()
{
*
m
=
FetchVar
{}
}
func
(
m
*
FetchVar
)
String
()
string
{
return
proto
.
CompactTextString
(
m
)
}
func
(
*
FetchVar
)
ProtoMessage
()
{}
func
(
*
FetchVar
)
Descriptor
()
([]
byte
,
[]
int
)
{
return
fileDescriptor_efa52beffa29d37a
,
[]
int
{
1
}
}
func
(
m
*
FetchVar
)
XXX_Unmarshal
(
b
[]
byte
)
error
{
return
xxx_messageInfo_FetchVar
.
Unmarshal
(
m
,
b
)
}
func
(
m
*
FetchVar
)
XXX_Marshal
(
b
[]
byte
,
deterministic
bool
)
([]
byte
,
error
)
{
return
xxx_messageInfo_FetchVar
.
Marshal
(
b
,
m
,
deterministic
)
}
func
(
m
*
FetchVar
)
XXX_Merge
(
src
proto
.
Message
)
{
xxx_messageInfo_FetchVar
.
Merge
(
m
,
src
)
}
func
(
m
*
FetchVar
)
XXX_Size
()
int
{
return
xxx_messageInfo_FetchVar
.
Size
(
m
)
}
func
(
m
*
FetchVar
)
XXX_DiscardUnknown
()
{
xxx_messageInfo_FetchVar
.
DiscardUnknown
(
m
)
}
var
xxx_messageInfo_FetchVar
proto
.
InternalMessageInfo
const
Default_FetchVar_IsLodTensor
bool
=
false
func
(
m
*
FetchVar
)
GetName
()
string
{
if
m
!=
nil
&&
m
.
Name
!=
nil
{
return
*
m
.
Name
}
return
""
}
func
(
m
*
FetchVar
)
GetAliasName
()
string
{
if
m
!=
nil
&&
m
.
AliasName
!=
nil
{
return
*
m
.
AliasName
}
return
""
}
func
(
m
*
FetchVar
)
GetIsLodTensor
()
bool
{
if
m
!=
nil
&&
m
.
IsLodTensor
!=
nil
{
return
*
m
.
IsLodTensor
}
return
Default_FetchVar_IsLodTensor
}
func
(
m
*
FetchVar
)
GetShape
()
[]
int32
{
if
m
!=
nil
{
return
m
.
Shape
}
return
nil
}
type
GeneralModelConfig
struct
{
FeedVar
[]
*
FeedVar
`protobuf:"bytes,1,rep,name=feed_var,json=feedVar" json:"feed_var,omitempty"`
FetchVar
[]
*
FetchVar
`protobuf:"bytes,2,rep,name=fetch_var,json=fetchVar" json:"fetch_var,omitempty"`
XXX_NoUnkeyedLiteral
struct
{}
`json:"-"`
XXX_unrecognized
[]
byte
`json:"-"`
XXX_sizecache
int32
`json:"-"`
}
func
(
m
*
GeneralModelConfig
)
Reset
()
{
*
m
=
GeneralModelConfig
{}
}
func
(
m
*
GeneralModelConfig
)
String
()
string
{
return
proto
.
CompactTextString
(
m
)
}
func
(
*
GeneralModelConfig
)
ProtoMessage
()
{}
func
(
*
GeneralModelConfig
)
Descriptor
()
([]
byte
,
[]
int
)
{
return
fileDescriptor_efa52beffa29d37a
,
[]
int
{
2
}
}
func
(
m
*
GeneralModelConfig
)
XXX_Unmarshal
(
b
[]
byte
)
error
{
return
xxx_messageInfo_GeneralModelConfig
.
Unmarshal
(
m
,
b
)
}
func
(
m
*
GeneralModelConfig
)
XXX_Marshal
(
b
[]
byte
,
deterministic
bool
)
([]
byte
,
error
)
{
return
xxx_messageInfo_GeneralModelConfig
.
Marshal
(
b
,
m
,
deterministic
)
}
func
(
m
*
GeneralModelConfig
)
XXX_Merge
(
src
proto
.
Message
)
{
xxx_messageInfo_GeneralModelConfig
.
Merge
(
m
,
src
)
}
func
(
m
*
GeneralModelConfig
)
XXX_Size
()
int
{
return
xxx_messageInfo_GeneralModelConfig
.
Size
(
m
)
}
func
(
m
*
GeneralModelConfig
)
XXX_DiscardUnknown
()
{
xxx_messageInfo_GeneralModelConfig
.
DiscardUnknown
(
m
)
}
var
xxx_messageInfo_GeneralModelConfig
proto
.
InternalMessageInfo
func
(
m
*
GeneralModelConfig
)
GetFeedVar
()
[]
*
FeedVar
{
if
m
!=
nil
{
return
m
.
FeedVar
}
return
nil
}
func
(
m
*
GeneralModelConfig
)
GetFetchVar
()
[]
*
FetchVar
{
if
m
!=
nil
{
return
m
.
FetchVar
}
return
nil
}
func
init
()
{
proto
.
RegisterType
((
*
FeedVar
)(
nil
),
"baidu.paddle_serving.configure.FeedVar"
)
proto
.
RegisterType
((
*
FetchVar
)(
nil
),
"baidu.paddle_serving.configure.FetchVar"
)
proto
.
RegisterType
((
*
GeneralModelConfig
)(
nil
),
"baidu.paddle_serving.configure.GeneralModelConfig"
)
}
func
init
()
{
proto
.
RegisterFile
(
"general_model_config.proto"
,
fileDescriptor_efa52beffa29d37a
)
}
var
fileDescriptor_efa52beffa29d37a
=
[]
byte
{
// 283 bytes of a gzipped FileDescriptorProto
0x1f
,
0x8b
,
0x08
,
0x00
,
0x00
,
0x00
,
0x00
,
0x00
,
0x02
,
0xff
,
0xb4
,
0xd0
,
0x31
,
0x4b
,
0xc4
,
0x30
,
0x14
,
0x07
,
0x70
,
0x72
,
0x6d
,
0xb9
,
0xf6
,
0x1d
,
0x2e
,
0xc1
,
0xa1
,
0x08
,
0x1e
,
0xe5
,
0x16
,
0xe3
,
0x52
,
0xc4
,
0xf1
,
0x46
,
0xc5
,
0x73
,
0x51
,
0x87
,
0x72
,
0xb8
,
0x86
,
0xd8
,
0xbc
,
0xb6
,
0x81
,
0x5c
,
0x53
,
0x92
,
0xde
,
0xc1
,
0x2d
,
0x7e
,
0x13
,
0xf1
,
0xab
,
0x4a
,
0x93
,
0x43
,
0x9c
,
0x74
,
0x72
,
0x7b
,
0x79
,
0xff
,
0xf0
,
0xde
,
0xe3
,
0x07
,
0x17
,
0x2d
,
0xf6
,
0x68
,
0x85
,
0xe6
,
0x3b
,
0x23
,
0x51
,
0xf3
,
0xda
,
0xf4
,
0x8d
,
0x6a
,
0xcb
,
0xc1
,
0x9a
,
0xd1
,
0xd0
,
0xe5
,
0x9b
,
0x50
,
0x72
,
0x5f
,
0x0e
,
0x42
,
0x4a
,
0x8d
,
0xdc
,
0xa1
,
0x3d
,
0xa8
,
0xbe
,
0x2d
,
0xc3
,
0x97
,
0xbd
,
0xc5
,
0xd5
,
0x07
,
0x81
,
0xf9
,
0x06
,
0x51
,
0xbe
,
0x0a
,
0x4b
,
0x29
,
0xc4
,
0xbd
,
0xd8
,
0x61
,
0x4e
,
0x0a
,
0xc2
,
0xb2
,
0xca
,
0xd7
,
0xf4
,
0x12
,
0x40
,
0x68
,
0x25
,
0x1c
,
0xf7
,
0xc9
,
0xcc
,
0x27
,
0x99
,
0xef
,
0xbc
,
0x4c
,
0xf1
,
0x35
,
0x9c
,
0x29
,
0xc7
,
0xb5
,
0x91
,
0x7c
,
0xc4
,
0xde
,
0x19
,
0x9b
,
0x47
,
0x05
,
0x61
,
0xe9
,
0x3a
,
0x69
,
0x84
,
0x76
,
0x58
,
0x2d
,
0x94
,
0x7b
,
0x32
,
0x72
,
0xeb
,
0x13
,
0xba
,
0x84
,
0xac
,
0x41
,
0x94
,
0x7c
,
0x3c
,
0x0e
,
0x98
,
0xc7
,
0x05
,
0x61
,
0xc9
,
0x9a
,
0xdc
,
0x54
,
0xe9
,
0xd4
,
0xdb
,
0x1e
,
0x07
,
0xa4
,
0xe7
,
0x90
,
0xb8
,
0x4e
,
0x0c
,
0x98
,
0x27
,
0x45
,
0xc4
,
0x92
,
0x2a
,
0x3c
,
0x56
,
0xef
,
0x90
,
0x6e
,
0x70
,
0xac
,
0xbb
,
0xff
,
0xbf
,
0xef
,
0x7b
,
0x7f
,
0xfc
,
0x73
,
0xff
,
0x27
,
0x01
,
0xfa
,
0x18
,
0x78
,
0x9f
,
0x27
,
0xdd
,
0x7b
,
0x2f
,
0x47
,
0xef
,
0xc0
,
0x1f
,
0xce
,
0x0f
,
0xc2
,
0xe6
,
0xa4
,
0x88
,
0xd8
,
0xe2
,
0xf6
,
0xaa
,
0xfc
,
0x5d
,
0xba
,
0x3c
,
0x29
,
0x57
,
0xf3
,
0xe6
,
0xc4
,
0xfd
,
0x30
,
0x81
,
0x8c
,
0x75
,
0xe7
,
0x87
,
0xcc
,
0xfc
,
0x10
,
0xf6
,
0xf7
,
0x90
,
0x60
,
0x31
,
0xb9
,
0x85
,
0xea
,
0x2b
,
0x00
,
0x00
,
0xff
,
0xff
,
0x08
,
0x27
,
0x9c
,
0x1a
,
0xfe
,
0x01
,
0x00
,
0x00
,
}
go/serving_client/serving_client_api.go
0 → 100644
浏览文件 @
74465337
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package
serving_client
import
(
"bytes"
"encoding/json"
"io/ioutil"
"log"
"net/http"
pb
"general_model"
"github.com/golang/protobuf/proto"
)
type
Tensor
struct
{
Data
[]
byte
`json:"data"`
FloatData
[]
float32
`json:"float_data"`
IntData
[]
int64
`json:"int_data"`
ElemType
int
`json:"elem_type"`
Shape
[]
int
`json:"shape"`
}
type
FeedInst
struct
{
TensorArray
[]
Tensor
`json:"tensor_array"`
}
type
FetchInst
struct
{
TensorArray
[]
Tensor
`json:"tensor_array"`
}
type
Request
struct
{
Insts
[]
FeedInst
`json:"insts"`
FetchVarNames
[]
string
`json:"fetch_var_names"`
}
type
Response
struct
{
Insts
[]
FetchInst
`json:"insts"`
MeanInferUs
float32
`json:"mean_infer_us"`
}
type
Handle
struct
{
Url
string
Port
string
FeedAliasNameMap
map
[
string
]
string
FeedShapeMap
map
[
string
][]
int
FeedNameMap
map
[
string
]
int
FeedAliasNames
[]
string
FetchNameMap
map
[
string
]
int
FetchAliasNameMap
map
[
string
]
string
}
func
LoadModelConfig
(
config
string
)
Handle
{
in
,
err
:=
ioutil
.
ReadFile
(
config
)
if
err
!=
nil
{
log
.
Fatalln
(
"Failed to read general model: "
,
err
)
}
general_model_config
:=
&
pb
.
GeneralModelConfig
{}
if
err
:=
proto
.
Unmarshal
(
in
,
general_model_config
);
err
!=
nil
{
log
.
Fatalln
(
"Failed to parse GeneralModelConfig: "
,
err
)
}
log
.
Println
(
"read protobuf succeed"
)
handle
:=
Handle
{}
handle
.
FeedNameMap
=
map
[
string
]
int
{}
handle
.
FeedAliasNameMap
=
map
[
string
]
string
{}
handle
.
FeedShapeMap
=
map
[
string
][]
int
{}
handle
.
FetchNameMap
=
map
[
string
]
int
{}
handle
.
FetchAliasNameMap
=
map
[
string
]
string
{}
handle
.
FeedAliasNames
=
[]
string
{}
for
i
,
v
:=
range
general_model_config
.
FeedVar
{
handle
.
FeedNameMap
[
*
v
.
Name
]
=
i
tmp_array
:=
[]
int
{}
for
_
,
vv
:=
range
v
.
Shape
{
tmp_array
=
append
(
tmp_array
,
int
(
vv
))
}
handle
.
FeedShapeMap
[
*
v
.
Name
]
=
tmp_array
handle
.
FeedAliasNameMap
[
*
v
.
AliasName
]
=
*
v
.
Name
handle
.
FeedAliasNames
=
append
(
handle
.
FeedAliasNames
,
*
v
.
AliasName
)
}
for
i
,
v
:=
range
general_model_config
.
FetchVar
{
handle
.
FetchNameMap
[
*
v
.
Name
]
=
i
handle
.
FetchAliasNameMap
[
*
v
.
AliasName
]
=
*
v
.
Name
}
return
handle
}
func
Connect
(
url
string
,
port
string
,
handle
Handle
)
Handle
{
handle
.
Url
=
url
handle
.
Port
=
port
return
handle
}
func
Predict
(
handle
Handle
,
int_feed_map
map
[
string
][]
int64
,
fetch
[]
string
)
map
[
string
][]
float32
{
contentType
:=
"application/json;charset=utf-8"
var
tensor_array
[]
Tensor
var
inst
FeedInst
tensor_array
=
[]
Tensor
{}
inst
=
FeedInst
{}
for
i
:=
0
;
i
<
len
(
handle
.
FeedAliasNames
);
i
++
{
key_i
:=
handle
.
FeedAliasNames
[
i
]
var
tmp
Tensor
tmp
.
IntData
=
[]
int64
{}
tmp
.
Shape
=
[]
int
{}
tmp
.
IntData
=
int_feed_map
[
key_i
]
tmp
.
ElemType
=
0
tmp
.
Shape
=
handle
.
FeedShapeMap
[
key_i
]
tensor_array
=
append
(
tensor_array
,
tmp
)
}
inst
.
TensorArray
=
tensor_array
req
:=
&
Request
{
Insts
:
[]
FeedInst
{
inst
},
FetchVarNames
:
fetch
}
b
,
err
:=
json
.
Marshal
(
req
)
body
:=
bytes
.
NewBuffer
(
b
)
var
post_address
bytes
.
Buffer
post_address
.
WriteString
(
"http://"
)
post_address
.
WriteString
(
handle
.
Url
)
post_address
.
WriteString
(
":"
)
post_address
.
WriteString
(
handle
.
Port
)
post_address
.
WriteString
(
"/GeneralModelService/inference"
)
resp
,
err
:=
http
.
Post
(
post_address
.
String
(),
contentType
,
body
)
if
err
!=
nil
{
log
.
Println
(
"Post failed:"
,
err
)
}
defer
resp
.
Body
.
Close
()
content
,
err
:=
ioutil
.
ReadAll
(
resp
.
Body
)
if
err
!=
nil
{
log
.
Println
(
"Read failed:"
,
err
)
}
response_json
:=
Response
{}
err
=
json
.
Unmarshal
([]
byte
(
content
),
&
response_json
)
var
result
map
[
string
][]
float32
result
=
map
[
string
][]
float32
{}
for
i
,
v
:=
range
fetch
{
result
[
v
]
=
response_json
.
Insts
[
0
]
.
TensorArray
[
i
]
.
FloatData
}
return
result
}
python/paddle_serving_server/__init__.py
浏览文件 @
74465337
...
...
@@ -23,12 +23,12 @@ from version import serving_server_version
class
OpMaker
(
object
):
def
__init__
(
self
):
self
.
op_dict
=
{
"general_infer"
:
"General
InferOp"
,
"general_reader"
:
"GeneralReaderOp"
,
"general_single_kv"
:
"GeneralSingleKV
Op"
,
"general_dist_kv"
:
"GeneralDistKVOp"
}
self
.
op_dict
=
{
"general_infer"
:
"GeneralInferOp"
,
"general_text_infer"
:
"GeneralText
InferOp"
,
"general_reader"
:
"GeneralReaderOp"
,
"general_text_reader"
:
"GeneralTextReader
Op"
,
"general_single_kv"
:
"GeneralSingleKVOp"
,
"general_dist_kv"
:
"GeneralDistKVOp"
}
# currently, inputs and outputs are not used
# when we have OpGraphMaker, inputs and outputs are necessary
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录