Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
7309ad63
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7309ad63
编写于
6月 08, 2020
作者:
B
barrierye
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
change narray to list
上级
6acca6f7
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
129 addition
and
66 deletion
+129
-66
python/paddle_serving_client/__init__.py
python/paddle_serving_client/__init__.py
+52
-31
python/paddle_serving_server/__init__.py
python/paddle_serving_server/__init__.py
+52
-26
python/paddle_serving_server/gserver_general_model_service.proto
...paddle_serving_server/gserver_general_model_service.proto
+24
-8
python/setup.py.server.in
python/setup.py.server.in
+1
-1
未找到文件。
python/paddle_serving_client/__init__.py
浏览文件 @
7309ad63
...
...
@@ -392,6 +392,14 @@ class GClient(object):
self
.
stub_
=
gserver_general_model_service_pb2_grpc
.
GServerGeneralModelServiceStub
(
self
.
channel_
)
def
_flatten_list
(
self
,
nested_list
):
for
item
in
nested_list
:
if
isinstance
(
item
,
(
list
,
tuple
)):
for
sub_item
in
self
.
_flatten_list
(
item
):
yield
sub_item
else
:
yield
item
def
_parse_model_config
(
self
,
model_config_path
):
model_conf
=
m_config
.
GeneralModelConfig
()
f
=
open
(
model_config_path
,
'r'
)
...
...
@@ -407,24 +415,21 @@ class GClient(object):
for
i
,
var
in
enumerate
(
model_conf
.
feed_var
):
self
.
feed_types_
[
var
.
alias_name
]
=
var
.
feed_type
self
.
feed_shapes_
[
var
.
alias_name
]
=
var
.
shape
if
self
.
feed_types_
[
var
.
alias_name
]
==
'float'
:
self
.
feed_types_
[
var
.
alias_name
]
=
'float32'
if
var
.
is_lod_tensor
:
self
.
lod_tensor_set
.
add
(
var
.
alias_name
)
self
.
lod_tensor_set
_
.
add
(
var
.
alias_name
)
else
:
counter
=
1
for
dim
in
self
.
feed_shapes_
[
var
.
alias_name
]:
counter
*=
dim
for
i
,
var
in
enumerate
(
model_conf
.
fetch_var
):
self
.
fetch_types_
[
var
.
alias_name
]
=
var
.
fetch_type
if
self
.
fetch_types_
[
var
.
alias_name
]
==
'float'
:
self
.
fetch_types_
[
var
.
alias_name
]
=
'float32'
if
var
.
is_lod_tensor
:
self
.
lod_tensor_set_
.
add
(
var
.
alias_name
)
def
_pack_feed_data
(
self
,
feed
,
fetch
):
req
=
gserver_general_model_service_pb2
.
Request
()
req
.
fetch_var_names
.
extend
(
fetch
)
req
.
feed_var_names
.
extend
(
feed
.
keys
())
feed_batch
=
None
if
isinstance
(
feed
,
dict
):
feed_batch
=
[
feed
]
...
...
@@ -432,39 +437,55 @@ class GClient(object):
feed_batch
=
feed
else
:
raise
Exception
(
"{} not support"
.
format
(
type
(
feed
)))
init_feed_names
=
False
for
feed_data
in
feed_batch
:
inst
=
gserver_general_model_service_pb2
.
Inst
()
for
name
,
var
in
feed_data
.
items
():
inst
.
names
.
append
(
name
)
itype
=
self
.
type_map_
[
self
.
feed_types_
[
name
]]
data
=
np
.
array
(
var
,
dtype
=
itype
)
inst
.
data
.
append
(
data
.
tobytes
())
inst
=
gserver_general_model_service_pb2
.
FeedInst
()
for
name
in
req
.
feed_var_names
:
tensor
=
gserver_general_model_service_pb2
.
Tensor
()
var
=
feed_data
[
name
]
v_type
=
self
.
feed_types_
[
name
]
if
v_type
==
0
:
# int64
if
isinstance
(
var
,
np
.
ndarray
):
tensor
.
int64_data
.
extend
(
self
.
_flatten_list
(
var
.
tolist
()))
else
:
tensor
.
int64_data
.
extend
(
self
.
_flatten_list
(
var
))
elif
v_type
==
1
:
# float32
if
isinstance
(
var
,
np
.
ndarray
):
tensor
.
float_data
.
extend
(
self
.
_flatten_list
(
var
.
tolist
()))
else
:
tensor
.
float_data
.
extend
(
self
.
_flatten_list
(
var
))
else
:
raise
Exception
(
"error type."
)
if
isinstance
(
var
,
np
.
ndarray
):
inst
.
shape
.
append
(
np
.
array
(
list
(
var
.
shape
),
dtype
=
"int32"
).
tobytes
())
tensor
.
shape
.
extend
(
list
(
var
.
shape
))
else
:
inst
.
shape
.
append
(
np
.
array
(
self
.
feed_shapes_
[
name
],
dtype
=
"int32"
).
tobytes
())
req
.
feed_insts
.
append
(
inst
)
tensor
.
shape
.
extend
(
self
.
feed_shapes_
[
name
])
inst
.
tensor_array
.
append
(
tensor
)
req
.
insts
.
append
(
inst
)
return
req
def
_unpack_resp
(
self
,
resp
):
def
_unpack_resp
(
self
,
resp
,
fetch
):
result_map
=
{}
inst
=
resp
.
fetch_insts
[
0
]
for
i
,
name
in
enumerate
(
inst
.
names
):
if
name
not
in
self
.
fetch_names_
:
continue
itype
=
self
.
type_map_
[
self
.
fetch_types_
[
name
]]
result_map
[
name
]
=
np
.
frombuffer
(
inst
.
data
[
i
],
dtype
=
itype
)
result_map
[
name
].
shape
=
np
.
frombuffer
(
inst
.
shape
[
i
],
dtype
=
"int32"
)
inst
=
resp
.
outputs
[
0
].
insts
[
0
]
tag
=
resp
.
tag
for
i
,
name
in
enumerate
(
fetch
):
var
=
inst
.
tensor_array
[
i
]
v_type
=
self
.
fetch_types_
[
name
]
if
v_type
==
0
:
# int64
result_map
[
name
]
=
np
.
array
(
list
(
var
.
int64_data
))
elif
v_type
==
1
:
# flot32
result_map
[
name
]
=
np
.
array
(
list
(
var
.
float_data
))
else
:
raise
Exception
(
"error type."
)
result_map
[
name
].
shape
=
list
(
var
.
shape
)
if
name
in
self
.
lod_tensor_set_
:
result_map
[
"{}.lod"
.
format
(
name
)]
=
np
.
frombuffer
(
inst
.
lod
[
i
],
dtype
=
"int32"
)
return
result_map
result_map
[
"{}.lod"
.
format
(
name
)]
=
np
.
array
(
list
(
var
.
lod
))
return
result_map
,
tag
def
predict
(
self
,
feed
,
fetch
):
def
predict
(
self
,
feed
,
fetch
,
need_variant_tag
=
False
):
req
=
self
.
_pack_feed_data
(
feed
,
fetch
)
resp
=
self
.
stub_
.
inference
(
req
)
return
self
.
_unpack_resp
(
resp
)
result_map
,
tag
=
self
.
_unpack_resp
(
resp
,
fetch
)
return
result_map
if
not
need_variant_tag
else
[
result_map
,
tag
]
python/paddle_serving_server/__init__.py
浏览文件 @
7309ad63
...
...
@@ -31,6 +31,7 @@ import gserver_general_model_service_pb2
import
gserver_general_model_service_pb2_grpc
from
multiprocessing
import
Pool
,
Process
from
concurrent
import
futures
import
itertools
class
OpMaker
(
object
):
...
...
@@ -463,52 +464,77 @@ class GServerService(
for
i
,
var
in
enumerate
(
model_conf
.
feed_var
):
self
.
feed_types_
[
var
.
alias_name
]
=
var
.
feed_type
self
.
feed_shapes_
[
var
.
alias_name
]
=
var
.
shape
if
self
.
feed_types_
[
var
.
alias_name
]
==
'float'
:
self
.
feed_types_
[
var
.
alias_name
]
=
'float32'
if
var
.
is_lod_tensor
:
self
.
lod_tensor_set_
.
add
(
var
.
alias_name
)
for
i
,
var
in
enumerate
(
model_conf
.
fetch_var
):
self
.
fetch_types_
[
var
.
alias_name
]
=
var
.
fetch_type
if
self
.
fetch_types_
[
var
.
alias_name
]
==
'float'
:
self
.
fetch_types_
[
var
.
alias_name
]
=
'float32'
if
var
.
is_lod_tensor
:
self
.
lod_tensor_set_
.
add
(
var
.
alias_name
)
def
_flatten_list
(
self
,
nested_list
):
for
item
in
nested_list
:
if
isinstance
(
item
,
(
list
,
tuple
)):
for
sub_item
in
self
.
_flatten_list
(
item
):
yield
sub_item
else
:
yield
item
def
_unpack_request
(
self
,
request
):
feed_names
=
list
(
request
.
feed_var_names
)
fetch_names
=
list
(
request
.
fetch_var_names
)
feed_batch
=
[]
for
feed_inst
in
request
.
feed_
insts
:
for
feed_inst
in
request
.
insts
:
feed_dict
=
{}
for
idx
,
name
in
enumerate
(
feed_inst
.
names
):
data
=
feed_inst
.
data
[
idx
]
shape
=
feed_inst
.
shape
[
idx
]
itype
=
self
.
type_map_
[
self
.
feed_types_
[
name
]]
feed_dict
[
name
]
=
np
.
frombuffer
(
data
,
dtype
=
itype
)
feed_dict
[
name
].
shape
=
np
.
frombuffer
(
shape
,
dtype
=
"int32"
)
for
idx
,
name
in
enumerate
(
feed_names
):
v_type
=
self
.
feed_types_
[
name
]
data
=
None
if
v_type
==
0
:
# int64
data
=
np
.
array
(
list
(
feed_inst
.
tensor_array
[
idx
].
int64_data
),
dtype
=
"int64"
)
elif
v_type
==
1
:
# float32
data
=
np
.
array
(
list
(
feed_inst
.
tensor_array
[
idx
].
float_data
),
dtype
=
"float"
)
else
:
raise
Exception
(
"error type."
)
shape
=
list
(
feed_inst
.
tensor_array
[
idx
].
shape
)
data
.
shape
=
shape
feed_dict
[
name
]
=
data
feed_batch
.
append
(
feed_dict
)
return
feed_batch
,
fetch_names
def
_pack_resp_package
(
self
,
result
,
fetch_names
):
def
_pack_resp_package
(
self
,
result
,
fetch_names
,
tag
):
resp
=
gserver_general_model_service_pb2
.
Response
()
inst
=
gserver_general_model_service_pb2
.
Inst
()
for
name
in
fetch_names
:
inst
.
names
.
append
(
name
)
inst
.
data
.
append
(
result
[
name
].
tobytes
())
inst
.
shape
.
append
(
np
.
array
(
result
[
name
].
shape
,
dtype
=
"int32"
).
tobytes
())
if
name
in
self
.
lod_tensor_set_
:
inst
.
lod
.
append
(
result
[
"{}.lod"
.
format
(
name
)].
tobytes
())
# Only one model is supported temporarily
model_output
=
gserver_general_model_service_pb2
.
ModelOutput
()
inst
=
gserver_general_model_service_pb2
.
FetchInst
()
for
idx
,
name
in
enumerate
(
fetch_names
):
# model_output.fetch_var_names.append(name)
tensor
=
gserver_general_model_service_pb2
.
Tensor
()
v_type
=
self
.
fetch_types_
[
name
]
if
v_type
==
0
:
# int64
tensor
.
int64_data
.
extend
(
self
.
_flatten_list
(
result
[
name
].
tolist
()))
elif
v_type
==
1
:
# float32
tensor
.
float_data
.
extend
(
self
.
_flatten_list
(
result
[
name
].
tolist
()))
else
:
# TODO
inst
.
lod
.
append
(
bytes
(
0
))
resp
.
fetch_insts
.
append
(
inst
)
raise
Exception
(
"error type."
)
tensor
.
shape
.
extend
(
list
(
result
[
name
].
shape
))
if
name
in
self
.
lod_tensor_set_
:
tensor
.
lod
.
extend
(
result
[
"{}.lod"
.
format
(
name
)].
tolist
())
inst
.
tensor_array
.
append
(
tensor
)
model_output
.
insts
.
append
(
inst
)
resp
.
outputs
.
append
(
model_output
)
resp
.
tag
=
tag
return
resp
def
inference
(
self
,
request
,
context
):
feed_dict
,
fetch_names
=
self
.
_unpack_request
(
request
)
data
=
self
.
bclient_
.
predict
(
feed
=
feed_dict
,
fetch
=
fetch_names
)
return
self
.
_pack_resp_package
(
data
,
fetch_names
)
data
,
tag
=
self
.
bclient_
.
predict
(
feed
=
feed_dict
,
fetch
=
fetch_names
,
need_variant_tag
=
True
)
return
self
.
_pack_resp_package
(
data
,
fetch_names
,
tag
)
class
GServer
(
object
):
...
...
python/paddle_serving_server/gserver_general_model_service.proto
浏览文件 @
7309ad63
...
...
@@ -14,19 +14,35 @@
syntax
=
"proto2"
;
message
Inst
{
message
Tensor
{
repeated
bytes
data
=
1
;
repeated
string
names
=
2
;
repeated
bytes
lod
=
3
;
repeated
bytes
shape
=
4
;
}
repeated
int32
int_data
=
2
;
repeated
int64
int64_data
=
3
;
repeated
float
float_data
=
4
;
optional
int32
elem_type
=
5
;
repeated
int32
shape
=
6
;
repeated
int32
lod
=
7
;
// only for fetch tensor currently
};
message
FeedInst
{
repeated
Tensor
tensor_array
=
1
;
};
message
FetchInst
{
repeated
Tensor
tensor_array
=
1
;
};
message
Request
{
repeated
Inst
feed_insts
=
1
;
repeated
string
fetch_var_names
=
2
;
repeated
FeedInst
insts
=
1
;
repeated
string
feed_var_names
=
2
;
repeated
string
fetch_var_names
=
3
;
};
message
Response
{
repeated
Inst
fetch_insts
=
1
;
}
message
Response
{
repeated
ModelOutput
outputs
=
1
;
optional
string
tag
=
2
;
};
message
ModelOutput
{
repeated
FetchInst
insts
=
1
;
optional
string
engine_name
=
2
;
}
service
GServerGeneralModelService
{
rpc
inference
(
Request
)
returns
(
Response
)
{}
...
...
python/setup.py.server.in
浏览文件 @
7309ad63
...
...
@@ -37,7 +37,7 @@ def python_version():
max_version, mid_version, min_version = python_version()
REQUIRED_PACKAGES = [
'six >= 1.10.0', 'protobuf >= 3.1.0',
'six >= 1.10.0', 'protobuf >= 3.1.0',
'grpcio >= 1.28.1',
'paddle_serving_client', 'flask >= 1.1.1', 'paddle_serving_app'
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录