提交 6bd99f11 编写于 作者: M MRXLT

refine bert benchmark script

上级 90b6492f
......@@ -27,7 +27,6 @@ import tokenization
import requests
import json
from bert_reader import BertReader
args = benchmark_args()
......@@ -36,42 +35,56 @@ def single_func(idx, resource):
dataset = []
for line in fin:
dataset.append(line.strip())
profile_flags = False
if os.getenv("FLAGS_profile_client"):
profile_flags = True
if args.request == "rpc":
reader = BertReader(vocab_file="vocab.txt", max_seq_len=20)
fetch = ["pooled_output"]
client = Client()
client.load_client_config(args.model)
client.connect([resource["endpoint"][idx % len(resource["endpoint"])]])
start = time.time()
for i in range(1000):
if args.batch_size == 1:
feed_dict = reader.process(dataset[i])
result = client.predict(feed=feed_dict, fetch=fetch)
for i in range(turns):
if args.batch_size >= 1:
feed_batch = []
b_start = time.time()
for bi in range(args.batch_size):
feed_batch.append(reader.process(dataset[bi]))
b_end = time.time()
if profile_flags:
sys.stderr.write(
"PROFILE\tpid:{}\tbert_pre_0:{} bert_pre_1:{}\n".format(
os.getpid(),
int(round(b_start * 1000000)),
int(round(b_end * 1000000))))
result = client.predict(feed=feed_batch, fetch=fetch)
else:
print("unsupport batch size {}".format(args.batch_size))
elif args.request == "http":
start = time.time()
header = {"Content-Type": "application/json"}
for i in range(1000):
dict_data = {"words": dataset[i], "fetch": ["pooled_output"]}
r = requests.post(
'http://{}/bert/prediction'.format(resource["endpoint"][
idx % len(resource["endpoint"])]),
data=json.dumps(dict_data),
headers=header)
raise ("not implemented")
end = time.time()
return [[end - start]]
if __name__ == '__main__':
multi_thread_runner = MultiThreadRunner()
endpoint_list = ["127.0.0.1:9292"]
result = multi_thread_runner.run(single_func, args.thread,
{"endpoint": endpoint_list})
endpoint_list = [
"127.0.0.1:9292", "127.0.0.1:9293", "127.0.0.1:9294", "127.0.0.1:9295"
]
turns = 1000
start = time.time()
result = multi_thread_runner.run(
single_func, args.thread, {"endpoint": endpoint_list,
"turns": turns})
avg_cost = 0
for i in range(args.thread):
avg_cost += result[0][i]
avg_cost = avg_cost / args.thread
print("average total cost {} s.".format(avg_cost))
end = time.time()
total_cost = end - start
print("total cost :{} s".format(total_cost))
print("each thread cost :{} s. ".format(avg_cost))
print("qps :{} samples/s".format(args.batch_size * args.thread * turns /
total_cost))
rm profile_log
for thread_num in 1 2 4 8 16
export CUDA_VISIBLE_DEVICES=0,1,2,3
export FLAGS_profile_server=1
export FLAGS_profile_client=1
python -m paddle_serving_server_gpu.serve --model bert_seq20_model/ --port 9292 --thread 4 --gpu_ids 0,1,2,3 2> elog > stdlog &
sleep 5
#warm up
$PYTHONROOT/bin/python benchmark.py --thread 8 --batch_size 1 --model ./bert_seq20_client/serving_client_conf.prototxt --request rpc > profile 2>&1
for thread_num in 8 16 32
do
$PYTHONROOT/bin/python benchmark.py --thread $thread_num --model serving_client_conf/serving_client_conf.prototxt --request rpc > profile 2>&1
echo "========================================"
echo "batch size : $batch_size" >> profile_log
for batch_size in 1 4 16 64 256
do
$PYTHONROOT/bin/python benchmark.py --thread $thread_num --batch_size $batch_size --model ./bert_seq20_client/serving_client_conf.prototxt --request rpc > profile 2>&1
echo "thread num :" $thread_num
echo "batch size :" $batch_size
echo "=================Done===================="
echo "batch size :$batch_size" >> profile_log
$PYTHONROOT/bin/python ../util/show_profile.py profile $thread_num >> profile_log
tail -n 1 profile >> profile_log
tail -n 3 profile >> profile_log
done
done
ps -ef|grep 'serving'|grep -v grep|cut -c 9-15 | xargs kill -9
# -*- coding: utf-8 -*-
#
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from __future__ import unicode_literals, absolute_import
import os
import sys
import time
from paddle_serving_client import Client
from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args
from batching import pad_batch_data
import tokenization
import requests
import json
from bert_reader import BertReader
args = benchmark_args()
def single_func(idx, resource):
fin = open("data-c.txt")
dataset = []
for line in fin:
dataset.append(line.strip())
profile_flags = False
if os.environ["FLAGS_profile_client"]:
profile_flags = True
if args.request == "rpc":
reader = BertReader(vocab_file="vocab.txt", max_seq_len=20)
fetch = ["pooled_output"]
client = Client()
client.load_client_config(args.model)
client.connect([resource["endpoint"][idx % len(resource["endpoint"])]])
start = time.time()
for i in range(1000):
if args.batch_size >= 1:
feed_batch = []
b_start = time.time()
for bi in range(args.batch_size):
feed_batch.append(reader.process(dataset[bi]))
b_end = time.time()
if profile_flags:
print("PROFILE\tpid:{}\tbert_pre_0:{} bert_pre_1:{}".format(
os.getpid(),
int(round(b_start * 1000000)),
int(round(b_end * 1000000))))
result = client.predict(feed=feed_batch, fetch=fetch)
else:
print("unsupport batch size {}".format(args.batch_size))
elif args.request == "http":
raise ("no batch predict for http")
end = time.time()
return [[end - start]]
if __name__ == '__main__':
multi_thread_runner = MultiThreadRunner()
endpoint_list = ["127.0.0.1:9292"]
result = multi_thread_runner.run(single_func, args.thread,
{"endpoint": endpoint_list})
avg_cost = 0
for i in range(args.thread):
avg_cost += result[0][i]
avg_cost = avg_cost / args.thread
print("average total cost {} s.".format(avg_cost))
rm profile_log
export CUDA_VISIBLE_DEVICES=0,1,2,3
python -m paddle_serving_server_gpu.serve --model bert_seq20_model/ --port 9295 --thread 4 --gpu_ids 0,1,2,3 2> elog > stdlog &
sleep 5
for thread_num in 1 2 4 8 16
do
for batch_size in 1 2 4 8 16 32 64 128 256 512
do
$PYTHONROOT/bin/python benchmark_batch.py --thread $thread_num --batch_size $batch_size --model serving_client_conf/serving_client_conf.prototxt --request rpc > profile 2>&1
echo "========================================"
echo "thread num: ", $thread_num
echo "batch size: ", $batch_size
echo "batch size : $batch_size" >> profile_log
$PYTHONROOT/bin/python ../util/show_profile.py profile $thread_num >> profile_log
tail -n 1 profile >> profile_log
done
done
......@@ -31,7 +31,7 @@ with open(profile_file) as f:
if line[0] == "PROFILE":
prase(line[2])
print("thread num {}".format(thread_num))
print("thread num :{}".format(thread_num))
for name in time_dict:
print("{} cost {} s in each thread ".format(name, time_dict[name] / (
print("{} cost :{} s in each thread ".format(name, time_dict[name] / (
1000000.0 * float(thread_num))))
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册