提交 6ae33f64 编写于 作者: M MRXLT

add imagenet demo

上级 e1c29095
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_server.plugin_service import PluginService
import sys
import cv2
import base64
from PIL import Image
from StringIO import StringIO
import numpy as np
from image_server import start_serving
class ImageService(PluginService):
def set_param(self):
self.image_mean = [0.485, 0.456, 0.406]
self.image_std = [0.229, 0.224, 0.225]
self.image_shape = [3, 224, 224]
self.resize_short_size = 256
self.interpolation = None
def resize_short(self, img, target_size, interpolation=None):
"""resize image
Args:
img: image data
target_size: resize short target size
interpolation: interpolation mode
Returns:
resized image data
"""
percent = float(target_size) / min(img.shape[0], img.shape[1])
resized_width = int(round(img.shape[1] * percent))
resized_height = int(round(img.shape[0] * percent))
if interpolation:
resized = cv2.resize(
img, (resized_width, resized_height),
interpolation=interpolation)
else:
resized = cv2.resize(img, (resized_width, resized_height))
return resized
def crop_image(self, img, target_size, center):
"""crop image
Args:
img: images data
target_size: crop target size
center: crop mode
Returns:
img: cropped image data
"""
height, width = img.shape[:2]
size = target_size
if center == True:
w_start = (width - size) // 2
h_start = (height - size) // 2
else:
w_start = np.random.randint(0, width - size + 1)
h_start = np.random.randint(0, height - size + 1)
w_end = w_start + size
h_end = h_start + size
img = img[h_start:h_end, w_start:w_end, :]
return img
def process_image(self, sample):
""" process_image """
mean = self.image_mean
std = self.image_std
crop_size = self.image_shape[1]
data = np.fromstring(sample, np.uint8)
img = cv2.imdecode(data, cv2.IMREAD_COLOR)
if img is None:
print("img is None, pass it.")
return None
if crop_size > 0:
target_size = self.resize_short_size
img = self.resize_short(
img, target_size, interpolation=self.interpolation)
img = self.crop_image(img, target_size=crop_size, center=True)
img = img[:, :, ::-1]
img = img.astype('float32').transpose((2, 0, 1)) / 255
img_mean = np.array(mean).reshape((3, 1, 1))
img_std = np.array(std).reshape((3, 1, 1))
img -= img_mean
img /= img_std
return img
def preprocess(self, feed={}, fetch=[]):
self.set_param()
if "image" not in feed:
raise ("feed data error!")
sample = base64.b64decode(feed["image"])
img = self.process_image(sample)
res_feed = {}
res_feed["image"] = img.reshape(-1)
return res_feed, fetch
image_service = ImageService(name="image", model=sys.argv[1], port=9291)
image_service.start_service()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import requests
import base64
import sys
import cv2
import json
import numpy as np
image = open("./to_longteng/n01440764/n01440764_12362.JPEG").read()
image = base64.b64encode(image)
req = {}
req["image"] = image
req["fetch"] = ["score"]
req = json.dumps(req)
url = "http://127.0.0.1:9291/image/prediction"
headers = {"Content-Type": "application/json"}
r = requests.post(url, data=req, headers=headers)
score = r.json()["score"]
score = np.array(score)
print("max score : {} class {}".format(np.max(score), np.argmax(score)))
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
from paddle_serving_server import OpMaker
from paddle_serving_server import OpSeqMaker
from paddle_serving_server import Server
def start_serving():
op_maker = OpMaker()
read_op = op_maker.create('general_reader')
general_infer_op = op_maker.create('general_infer')
general_response_op = op_maker.create('general_response')
op_seq_maker = OpSeqMaker()
op_seq_maker.add_op(read_op)
op_seq_maker.add_op(general_infer_op)
op_seq_maker.add_op(general_response_op)
server = Server()
server.set_op_sequence(op_seq_maker.get_op_sequence())
server.set_num_threads(24)
server.load_model_config(sys.argv[1])
port = int(sys.argv[2])
server.prepare_server(workdir="work_dir1", port=port, device="cpu")
server.run_server()
if __name__ == "__main__":
start_serving()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册