提交 69bd6505 编写于 作者: J Jiawei Wang 提交者: wangjiawei04

Merge pull request #981 from HexToString/fix_bert_doc

fix bert_web_service_gpu and fix doc
上级 4fd565e1
......@@ -3,9 +3,10 @@
([简体中文](./README_CN.md)|English)
In the example, a BERT model is used for semantic understanding prediction, and the text is represented as a vector, which can be used for further analysis and prediction.
If your python version is 3.X, replace the 'pip' field in the following command with 'pip3',replace 'python' with 'python3'.
### Getting Model
method 1:
This example use model [BERT Chinese Model](https://www.paddlepaddle.org.cn/hubdetail?name=bert_chinese_L-12_H-768_A-12&en_category=SemanticModel) from [Paddlehub](https://github.com/PaddlePaddle/PaddleHub).
Install paddlehub first
......@@ -22,11 +23,13 @@ the 128 in the command above means max_seq_len in BERT model, which is the lengt
the config file and model file for server side are saved in the folder bert_seq128_model.
the config file generated for client side is saved in the folder bert_seq128_client.
method 2:
You can also download the above model from BOS(max_seq_len=128). After decompression, the config file and model file for server side are stored in the bert_chinese_L-12_H-768_A-12_model folder, and the config file generated for client side is stored in the bert_chinese_L-12_H-768_A-12_client folder:
```shell
wget https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SemanticModel/bert_chinese_L-12_H-768_A-12.tar.gz
tar -xzf bert_chinese_L-12_H-768_A-12.tar.gz
```
if your model is bert_chinese_L-12_H-768_A-12_model, replace the 'bert_seq128_model' field in the following command with 'bert_chinese_L-12_H-768_A-12_model',replace 'bert_seq128_client' with 'bert_chinese_L-12_H-768_A-12_client'.
### Getting Dict and Sample Dataset
......@@ -36,11 +39,11 @@ sh get_data.sh
this script will download Chinese Dictionary File vocab.txt and Chinese Sample Data data-c.txt
### RPC Inference Service
Run
start cpu inference service,Run
```
python -m paddle_serving_server.serve --model bert_seq128_model/ --port 9292 #cpu inference service
```
Or
Or,start gpu inference service,Run
```
python -m paddle_serving_server_gpu.serve --model bert_seq128_model/ --port 9292 --gpu_ids 0 #launch gpu inference service at GPU 0
```
......@@ -59,12 +62,18 @@ head data-c.txt | python bert_client.py --model bert_seq128_client/serving_clien
the client reads data from data-c.txt and send prediction request, the prediction is given by word vector. (Due to massive data in the word vector, we do not print it).
### HTTP Inference Service
start cpu HTTP inference service,Run
```
python bert_web_service.py bert_seq128_model/ 9292 #launch gpu inference service
```
Or,start gpu HTTP inference service,Run
```
export CUDA_VISIBLE_DEVICES=0,1
```
set environmental variable to specify which gpus are used, the command above means gpu 0 and gpu 1 is used.
```
python bert_web_service.py bert_seq128_model/ 9292 #launch gpu inference service
python bert_web_service_gpu.py bert_seq128_model/ 9292 #launch gpu inference service
```
### HTTP Inference
......
......@@ -4,8 +4,9 @@
示例中采用BERT模型进行语义理解预测,将文本表示为向量的形式,可以用来做进一步的分析和预测。
若使用python的版本为3.X, 将以下命令中的pip 替换为pip3, python替换为python3.
### 获取模型
方法1:
示例中采用[Paddlehub](https://github.com/PaddlePaddle/PaddleHub)中的[BERT中文模型](https://www.paddlepaddle.org.cn/hubdetail?name=bert_chinese_L-12_H-768_A-12&en_category=SemanticModel)
请先安装paddlehub
```
......@@ -19,11 +20,15 @@ python prepare_model.py 128
生成server端配置文件与模型文件,存放在bert_seq128_model文件夹。
生成client端配置文件,存放在bert_seq128_client文件夹。
方法2:
您也可以从bos上直接下载上述模型(max_seq_len=128),解压后server端配置文件与模型文件存放在bert_chinese_L-12_H-768_A-12_model文件夹,client端配置文件存放在bert_chinese_L-12_H-768_A-12_client文件夹:
```shell
wget https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SemanticModel/bert_chinese_L-12_H-768_A-12.tar.gz
tar -xzf bert_chinese_L-12_H-768_A-12.tar.gz
```
若使用bert_chinese_L-12_H-768_A-12_model模型,将下面命令中的bert_seq128_model字段替换为bert_chinese_L-12_H-768_A-12_model,bert_seq128_client字段替换为bert_chinese_L-12_H-768_A-12_client.
### 获取词典和样例数据
......@@ -33,13 +38,15 @@ sh get_data.sh
脚本将下载中文词典vocab.txt和中文样例数据data-c.txt
### 启动RPC预测服务
执行
启动cpu预测服务,执行
```
python -m paddle_serving_server.serve --model bert_seq128_model/ --port 9292 #启动cpu预测服务
```
或者
或者,启动gpu预测服务,执行
```
python -m paddle_serving_server_gpu.serve --model bert_seq128_model/ --port 9292 --gpu_ids 0 #在gpu 0上启动gpu预测服务
```
### 执行预测
......@@ -51,17 +58,28 @@ pip install paddle_serving_app
执行
```
head data-c.txt | python bert_client.py --model bert_seq128_client/serving_client_conf.prototxt
```
启动client读取data-c.txt中的数据进行预测,预测结果为文本的向量表示(由于数据较多,脚本中没有将输出进行打印),server端的地址在脚本中修改。
### 启动HTTP预测服务
启动cpu HTTP预测服务,执行
```
python bert_web_service.py bert_seq128_model/ 9292 #启动gpu预测服务
```
或者,启动gpu HTTP预测服务,执行
```
export CUDA_VISIBLE_DEVICES=0,1
```
通过环境变量指定gpu预测服务使用的gpu,示例中指定索引为0和1的两块gpu
```
python bert_web_service.py bert_seq128_model/ 9292 #启动gpu预测服务
python bert_web_service_gpu.py bert_seq128_model/ 9292 #启动gpu预测服务
```
### 执行预测
```
......
# coding=utf-8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_server_gpu.web_service import WebService
from paddle_serving_app.reader import ChineseBertReader
import sys
import os
import numpy as np
class BertService(WebService):
def load(self):
self.reader = ChineseBertReader({
"vocab_file": "vocab.txt",
"max_seq_len": 128
})
def preprocess(self, feed=[], fetch=[]):
feed_res = []
is_batch = False
for ins in feed:
feed_dict = self.reader.process(ins["words"].encode("utf-8"))
for key in feed_dict.keys():
feed_dict[key] = np.array(feed_dict[key]).reshape(
(len(feed_dict[key]), 1))
feed_res.append(feed_dict)
return feed_res, fetch, is_batch
bert_service = BertService(name="bert")
bert_service.load()
bert_service.load_model_config(sys.argv[1])
bert_service.prepare_server(
workdir="workdir", port=int(sys.argv[2]), device="gpu")
bert_service.run_rpc_service()
bert_service.run_web_service()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册