Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
67b5dbca
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
67b5dbca
编写于
3月 13, 2020
作者:
D
Dong Daxiang
提交者:
GitHub
3月 13, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #279 from guru4elephant/refine_bert_example
Refine bert example
上级
3fc5c3cb
509d9bdf
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
93 addition
and
200 deletion
+93
-200
python/examples/bert/benchmark.py
python/examples/bert/benchmark.py
+8
-9
python/examples/bert/benchmark_batch.py
python/examples/bert/benchmark_batch.py
+54
-47
python/examples/bert/bert_client.py
python/examples/bert/bert_client.py
+25
-140
python/paddle_serving_server_gpu/serve.py
python/paddle_serving_server_gpu/serve.py
+6
-4
未找到文件。
python/examples/bert/benchmark.py
浏览文件 @
67b5dbca
...
...
@@ -34,8 +34,7 @@ args = benchmark_args()
def
single_func
(
idx
,
resource
):
fin
=
open
(
"data-c.txt"
)
if
args
.
request
==
"rpc"
:
reader
=
BertReader
(
vocab_file
=
"vocab.txt"
,
max_seq_len
=
20
)
config_file
=
'./serving_client_conf/serving_client_conf.prototxt'
reader
=
BertReader
(
vocab_file
=
"vocab.txt"
,
max_seq_len
=
128
)
fetch
=
[
"pooled_output"
]
client
=
Client
()
client
.
load_client_config
(
args
.
model
)
...
...
@@ -50,7 +49,6 @@ def single_func(idx, resource):
start
=
time
.
time
()
header
=
{
"Content-Type"
:
"application/json"
}
for
line
in
fin
:
#dict_data = {"words": "this is for output ", "fetch": ["pooled_output"]}
dict_data
=
{
"words"
:
line
,
"fetch"
:
[
"pooled_output"
]}
r
=
requests
.
post
(
'http://{}/bert/prediction'
.
format
(
resource
[
"endpoint"
][
0
]),
...
...
@@ -62,10 +60,11 @@ def single_func(idx, resource):
if
__name__
==
'__main__'
:
multi_thread_runner
=
MultiThreadRunner
()
endpoint_list
=
[
"127.0.0.1:9494"
,
"127.0.0.1:9495"
,
"127.0.0.1:9496"
,
"127.0.0.1:9497"
]
#endpoint_list = endpoint_list + endpoint_list + endpoint_list
#result = multi_thread_runner.run(single_func, args.thread, {"endpoint":endpoint_list})
result
=
single_func
(
0
,
{
"endpoint"
:
endpoint_list
})
endpoint_list
=
[]
card_num
=
4
for
i
in
range
(
args
.
thread
):
endpoint_list
.
append
(
"127.0.0.1:{}"
.
format
(
9494
+
i
%
card_num
))
print
(
endpoint_list
)
result
=
multi_thread_runner
.
run
(
single_func
,
args
.
thread
,
{
"endpoint"
:
endpoint_list
})
print
(
result
)
python/examples/bert/benchmark_batch.py
浏览文件 @
67b5dbca
# -*- coding: utf-8 -*-
#
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
...
...
@@ -11,61 +13,66 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from
__future__
import
unicode_literals
,
absolute_import
import
os
import
sys
import
time
from
paddle_serving_client
import
Client
from
paddle_serving_client.metric
import
auc
from
paddle_serving_client.utils
import
MultiThreadRunner
import
time
from
bert_client
import
BertService
from
paddle_serving_client.utils
import
benchmark_args
from
batching
import
pad_batch_data
import
tokenization
import
requests
import
json
from
bert_reader
import
BertReader
args
=
benchmark_args
()
def
predict
(
thr_id
,
resource
,
batch_size
):
bc
=
BertService
(
model_name
=
"bert_chinese_L-12_H-768_A-12"
,
max_seq_len
=
20
,
do_lower_case
=
True
)
bc
.
load_client
(
resource
[
"conf_file"
],
resource
[
"server_endpoint"
])
thread_num
=
resource
[
"thread_num"
]
file_list
=
resource
[
"filelist"
]
line_id
=
0
result
=
[]
label_list
=
[]
dataset
=
[]
for
fn
in
file_list
:
fin
=
open
(
fn
)
for
line
in
fin
:
if
line_id
%
thread_num
==
thr_id
-
1
:
dataset
.
append
(
line
.
strip
())
line_id
+=
1
fin
.
close
()
batch_size
=
24
start
=
time
.
time
()
fetch
=
[
"pooled_output"
]
batch
=
[]
for
inst
in
dataset
:
if
len
(
batch
)
<
batch_size
:
batch
.
append
([
inst
])
else
:
fetch_map_batch
=
bc
.
run_batch_general
(
batch
,
fetch
)
batch
=
[]
result
.
append
(
fetch_map_batch
)
end
=
time
.
time
()
return
[
result
,
label_list
,
[
end
-
start
]]
def
single_func
(
idx
,
resource
):
fin
=
open
(
"data-c.txt"
)
if
args
.
request
==
"rpc"
:
reader
=
BertReader
(
vocab_file
=
"vocab.txt"
,
max_seq_len
=
128
)
fetch
=
[
"pooled_output"
]
client
=
Client
()
client
.
load_client_config
(
args
.
model
)
client
.
connect
([
resource
[
"endpoint"
][
idx
%
4
]])
if
__name__
==
'__main__'
:
conf_file
=
sys
.
argv
[
1
]
data_file
=
sys
.
argv
[
2
]
thread_num
=
sys
.
argv
[
3
]
batch_size
=
sys
.
ragv
[
4
]
resource
=
{}
resource
[
"conf_file"
]
=
conf_file
resource
[
"server_endpoint"
]
=
[
"127.0.0.1:9293"
]
resource
[
"filelist"
]
=
[
data_file
]
resource
[
"thread_num"
]
=
int
(
thread_num
)
start
=
time
.
time
()
idx
=
0
batch_data
=
[]
for
line
in
fin
:
feed_dict
=
reader
.
process
(
line
)
batch_data
.
append
(
feed_dict
)
idx
+=
1
if
idx
%
batch_size
==
0
:
result
=
client
.
batch_predict
(
feed_batch
=
batch_data
,
fetch
=
fetch
)
batch_data
=
[]
end
=
time
.
time
()
elif
args
.
request
==
"http"
:
header
=
{
"Content-Type"
:
"application/json"
}
for
line
in
fin
:
dict_data
=
{
"words"
:
line
,
"fetch"
:
[
"pooled_output"
]}
r
=
requests
.
post
(
'http://{}/bert/prediction'
.
format
(
resource
[
"endpoint"
][
0
]),
data
=
json
.
dumps
(
dict_data
),
headers
=
header
)
end
=
time
.
time
()
return
[[
end
-
start
]]
thread_runner
=
MultiThreadRunner
()
result
=
thread_runner
.
run
(
predict
,
int
(
sys
.
argv
[
3
]),
resource
,
batch_size
)
print
(
"total time {} s"
.
format
(
sum
(
result
[
-
1
])
/
len
(
result
[
-
1
])))
if
__name__
==
'__main__'
:
multi_thread_runner
=
MultiThreadRunner
()
endpoint_list
=
[]
card_num
=
4
for
i
in
range
(
args
.
thread
):
endpoint_list
.
append
(
"127.0.0.1:{}"
.
format
(
9494
+
i
%
card_num
))
print
(
endpoint_list
)
result
=
multi_thread_runner
.
run
(
single_func
,
args
.
thread
,
{
"endpoint"
:
endpoint_list
})
print
(
result
)
python/examples/bert/bert_client.py
浏览文件 @
67b5dbca
# coding:utf-8
# pylint: disable=doc-string-missing
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
import
numpy
as
np
...
...
@@ -10,146 +24,17 @@ import time
from
paddlehub.common.logger
import
logger
import
socket
from
paddle_serving_client
import
Client
from
paddle_serving_client.utils
import
MultiThreadRunner
from
paddle_serving_client.utils
import
benchmark_args
args
=
benchmark_args
()
_ver
=
sys
.
version_info
is_py2
=
(
_ver
[
0
]
==
2
)
is_py3
=
(
_ver
[
0
]
==
3
)
if
is_py2
:
import
httplib
if
is_py3
:
import
http.client
as
httplib
class
BertService
():
def
__init__
(
self
,
max_seq_len
=
128
,
model_name
=
"bert_uncased_L-12_H-768_A-12"
,
show_ids
=
False
,
do_lower_case
=
True
,
process_id
=
0
,
retry
=
3
):
self
.
process_id
=
process_id
self
.
reader_flag
=
False
self
.
batch_size
=
0
self
.
max_seq_len
=
max_seq_len
self
.
model_name
=
model_name
self
.
show_ids
=
show_ids
self
.
do_lower_case
=
do_lower_case
self
.
retry
=
retry
self
.
pid
=
os
.
getpid
()
self
.
profile
=
True
if
(
"FLAGS_profile_client"
in
os
.
environ
and
os
.
environ
[
"FLAGS_profile_client"
])
else
False
module
=
hub
.
Module
(
name
=
self
.
model_name
)
inputs
,
outputs
,
program
=
module
.
context
(
trainable
=
True
,
max_seq_len
=
self
.
max_seq_len
)
input_ids
=
inputs
[
"input_ids"
]
position_ids
=
inputs
[
"position_ids"
]
segment_ids
=
inputs
[
"segment_ids"
]
input_mask
=
inputs
[
"input_mask"
]
self
.
reader
=
hub
.
reader
.
ClassifyReader
(
vocab_path
=
module
.
get_vocab_path
(),
dataset
=
None
,
max_seq_len
=
self
.
max_seq_len
,
do_lower_case
=
self
.
do_lower_case
)
self
.
reader_flag
=
True
def
load_client
(
self
,
config_file
,
server_addr
):
self
.
client
=
Client
()
self
.
client
.
load_client_config
(
config_file
)
self
.
client
.
connect
(
server_addr
)
def
run_general
(
self
,
text
,
fetch
):
self
.
batch_size
=
len
(
text
)
data_generator
=
self
.
reader
.
data_generator
(
batch_size
=
self
.
batch_size
,
phase
=
'predict'
,
data
=
text
)
result
=
[]
prepro_start
=
time
.
time
()
for
run_step
,
batch
in
enumerate
(
data_generator
(),
start
=
1
):
token_list
=
batch
[
0
][
0
].
reshape
(
-
1
).
tolist
()
pos_list
=
batch
[
0
][
1
].
reshape
(
-
1
).
tolist
()
sent_list
=
batch
[
0
][
2
].
reshape
(
-
1
).
tolist
()
mask_list
=
batch
[
0
][
3
].
reshape
(
-
1
).
tolist
()
for
si
in
range
(
self
.
batch_size
):
feed
=
{
"input_ids"
:
token_list
,
"position_ids"
:
pos_list
,
"segment_ids"
:
sent_list
,
"input_mask"
:
mask_list
}
prepro_end
=
time
.
time
()
if
self
.
profile
:
print
(
"PROFILE
\t
pid:{}
\t
bert_pre_0:{} bert_pre_1:{}"
.
format
(
self
.
pid
,
int
(
round
(
prepro_start
*
1000000
)),
int
(
round
(
prepro_end
*
1000000
))))
fetch_map
=
self
.
client
.
predict
(
feed
=
feed
,
fetch
=
fetch
)
return
fetch_map
def
run_batch_general
(
self
,
text
,
fetch
):
self
.
batch_size
=
len
(
text
)
data_generator
=
self
.
reader
.
data_generator
(
batch_size
=
self
.
batch_size
,
phase
=
'predict'
,
data
=
text
)
result
=
[]
prepro_start
=
time
.
time
()
for
run_step
,
batch
in
enumerate
(
data_generator
(),
start
=
1
):
token_list
=
batch
[
0
][
0
].
reshape
(
-
1
).
tolist
()
pos_list
=
batch
[
0
][
1
].
reshape
(
-
1
).
tolist
()
sent_list
=
batch
[
0
][
2
].
reshape
(
-
1
).
tolist
()
mask_list
=
batch
[
0
][
3
].
reshape
(
-
1
).
tolist
()
feed_batch
=
[]
for
si
in
range
(
self
.
batch_size
):
feed
=
{
"input_ids"
:
token_list
[
si
*
self
.
max_seq_len
:(
si
+
1
)
*
self
.
max_seq_len
],
"position_ids"
:
pos_list
[
si
*
self
.
max_seq_len
:(
si
+
1
)
*
self
.
max_seq_len
],
"segment_ids"
:
sent_list
[
si
*
self
.
max_seq_len
:(
si
+
1
)
*
self
.
max_seq_len
],
"input_mask"
:
mask_list
[
si
*
self
.
max_seq_len
:(
si
+
1
)
*
self
.
max_seq_len
]
}
feed_batch
.
append
(
feed
)
prepro_end
=
time
.
time
()
if
self
.
profile
:
print
(
"PROFILE
\t
pid:{}
\t
bert_pre_0:{} bert_pre_1:{}"
.
format
(
self
.
pid
,
int
(
round
(
prepro_start
*
1000000
)),
int
(
round
(
prepro_end
*
1000000
))))
fetch_map_batch
=
self
.
client
.
batch_predict
(
feed_batch
=
feed_batch
,
fetch
=
fetch
)
return
fetch_map_batch
def
single_func
(
idx
,
resource
):
bc
=
BertService
(
model_name
=
'bert_chinese_L-12_H-768_A-12'
,
max_seq_len
=
20
,
show_ids
=
False
,
do_lower_case
=
True
)
config_file
=
'./serving_client_conf/serving_client_conf.prototxt'
fetch
=
[
"pooled_output"
]
server_addr
=
[
resource
[
"endpoint"
][
idx
]]
bc
.
load_client
(
config_file
,
server_addr
)
batch_size
=
1
start
=
time
.
time
()
fin
=
open
(
"data-c.txt"
)
for
line
in
fin
:
result
=
bc
.
run_general
([[
line
.
strip
()]],
fetch
)
end
=
time
.
time
()
return
[[
end
-
start
]]
if
__name__
==
'__main__'
:
multi_thread_runner
=
MultiThreadRunner
()
result
=
multi_thread_runner
.
run
(
single_func
,
args
.
thread
,
{
"endpoint"
:
[
"127.0.0.1:9494"
,
"127.0.0.1:9495"
,
"127.0.0.1:9496"
,
"127.0.0.1:9497"
]
})
fin
=
open
(
"data-c.txt"
)
reader
=
BertReader
(
vocab_file
=
"vocab.txt"
,
max_seq_len
=
128
)
fetch
=
[
"pooled_output"
]
endpoint_list
=
[
"127.0.0.1:9494"
]
client
=
Client
()
client
.
load_client_config
(
args
.
model
)
client
.
connect
(
endpoint_list
)
for
line
in
fin
:
feed_dict
=
reader
.
process
(
line
)
result
=
client
.
predict
(
feed
=
feed_dict
,
fetch
=
fetch
)
python/paddle_serving_server_gpu/serve.py
浏览文件 @
67b5dbca
...
...
@@ -17,8 +17,8 @@ Usage:
Example:
python -m paddle_serving_server.serve --model ./serving_server_model --port 9292
"""
import
os
import
argparse
import
os
from
multiprocessing
import
Pool
,
Process
from
paddle_serving_server_gpu
import
serve_args
...
...
@@ -64,12 +64,14 @@ def start_gpu_card_model(gpuid, args): # pylint: disable=doc-string-missing
def
start_multi_card
(
args
):
# pylint: disable=doc-string-missing
gpus
=
""
if
args
.
gpu_ids
==
""
:
import
os
gpus
=
os
.
environ
[
"CUDA_VISIBLE_DEVICES"
]
if
"CUDA_VISIBLE_DEVICES"
in
os
.
environ
:
gpus
=
os
.
environ
[
"CUDA_VISIBLE_DEVICES"
]
else
:
gpus
=
[]
else
:
gpus
=
args
.
gpu_ids
.
split
(
","
)
if
len
(
gpus
)
<=
0
:
start_gpu_card_model
(
-
1
)
start_gpu_card_model
(
-
1
,
args
)
else
:
gpu_processes
=
[]
for
i
,
gpu_id
in
enumerate
(
gpus
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录