提交 66d0faed 编写于 作者: W wangguibao

Documentation

Change-Id: I9ba95e63ebc9f9d73847ff899517719a2ebc7502
上级 cb7ea434
#搭建预测服务集群
从[客户端配置](CLIENT_CONFIGURE.md)中我们已经知道,通过在客户端SDK的配置文件predictors.prototxt适当配置,可以搭建多副本和多Variant的预测集群。以下以图像分类任务为例,在单机上模拟搭建单Variant的多副本、和多Variant的预测集群
## 1. 单Variant多副本的预测集群
### 1.1 在本机创建一个serving副本
首先复制一个sering目录
```shell
$ cd /path/to/paddle-serving/build/output/demo
$ cp -r serving/ serving_new/
$ cd serving_new/
```
在serving_new目录中,在conf/gflags.conf中增加如下一行,修改其启动端口为8011,这是为了让该副本监听不同端口
```shell
--port=8011
```
然后启动新副本
```shell
$ bin/serving&
```
### 1.2 修改client端配置,将新副本地址加入ip列表:
```shell
$ cd /path/to/paddle-serving/build/output/demo/client/image_classification
```
修改conf/predictors.prototxt ImageClassifyService部分如下所示
```JSON
predictors {
name: "ximage"
service_name: "baidu.paddle_serving.predictor.image_classification.ImageClassifyService"
endpoint_router: "WeightedRandomRender"
weighted_random_render_conf {
variant_weight_list: "50"
}
variants {
tag: "var1"
naming_conf {
cluster: "list://127.0.0.1:8010, 127.0.0.1:8011" # 在这里增加一个新的副本地址
}
}
}
```
重启client端
```shell
$ bin/ximage&
```
查看2个serving副本目录下是否均有收到请求:
```shell
$ cd /path/to/paddle-serving/build/output/demo/serving
$ tail -f log/serving.INFO
$ cd /path/to/paddle-serving/build/output/demo/serving_new
$ tail -f log/serving.INFO
```
## 2. 多Variant
### 2.1 本机创建新的serving副本
步骤同1.1节,略过
### 2.2 修改client配置,增加一个Variant
```shell
$ cd /path/to/paddle-serving/build/output/demo/client/image_classification
```
修改conf/predictors.prototxt ImageClassifyService部分如下所示
```JSON
predictors {
name: "ximage"
service_name: "baidu.paddle_serving.predictor.image_classification.ImageClassifyService"
endpoint_router: "WeightedRandomRender"
weighted_random_render_conf {
variant_weight_list: "50 | 50" # 一共2个variant,代表模型的2个版本。这里的权重代表调度的流量比例关系
}
variants {
tag: "var1"
naming_conf {
cluster: "list://127.0.0.1:8010"
}
}
variants { # 增加一个variant
tag: "var2"
naming_conf {
cluster: "list://127.0.0.1:8011"
}
}
}
```
重启client端
```shell
$ bin/ximage&
```
查看2个serving副本目录下是否均有收到请求:
```shell
$ cd /path/to/paddle-serving/build/output/demo/serving
$ tail -f log/serving.INFO
$ cd /path/to/paddle-serving/build/output/demo/serving_new
$ tail -f log/serving.INFO
```
查看client端是否有收到来自Variant1和Variant2的响应
```shell
$ cd /path/to/paddle-serving/build/output/demo/client/image_classification
$ tail -f log/ximage.INFO
```
以下是正常的输出
```
I0307 17:54:22.862087 24719 ximage.cpp:172] Debug string:
I0307 17:54:22.862650 24719 ximage.cpp:110] sample-0's classify result: n02112018,博美犬, prop: 0.522815
I0307 17:54:22.862666 24719 ximage.cpp:114] Succ call predictor[ximage], the tag is: var1, elapse_ms: 333
I0307 17:54:23.194780 24719 ximage.cpp:172] Debug string:
I0307 17:54:23.195322 24719 ximage.cpp:110] sample-0's classify result: n02112018,博美犬, prop: 0.522815
I0307 17:54:23.195334 24719 ximage.cpp:114] Succ call predictor[ximage], the tag is: var2, elapse_ms: 332
```
[Client Configure](CLIENT_CONFIGURE.md)
[How to Configure a Clustered Service](CLUSTERING.md)
[Creating a Prediction Service](CREATING.md)
[Design](DESIGN.md)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册