提交 5fec61e8 编写于 作者: M MRXLT 提交者: GitHub

Merge pull request #554 from MRXLT/pass_switch

add switch for ir pass
......@@ -82,7 +82,8 @@ python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --po
| `port` | int | `9292` | Exposed port of current service to users|
| `name` | str | `""` | Service name, can be used to generate HTTP request url |
| `model` | str | `""` | Path of paddle model directory to be served |
| `mem_optim` | bool | `False` | Enable memory optimization |
| `mem_optim` | bool | `False` | Enable memory / graphic memory optimization |
| `ir_optim` | bool | `False` | Enable analysis and optimization of calculation graph |
Here, we use `curl` to send a HTTP POST request to the service we just started. Users can use any python library to send HTTP POST as well, e.g, [requests](https://requests.readthedocs.io/en/master/).
</center>
......
......@@ -87,6 +87,7 @@ python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --po
| `name` | str | `""` | Service name, can be used to generate HTTP request url |
| `model` | str | `""` | Path of paddle model directory to be served |
| `mem_optim` | bool | `False` | Enable memory optimization |
| `ir_optim` | bool | `False` | Enable analysis and optimization of calculation graph |
我们使用 `curl` 命令来发送HTTP POST请求给刚刚启动的服务。用户也可以调用python库来发送HTTP POST请求,请参考英文文档 [requests](https://requests.readthedocs.io/en/master/)。
</center>
......
......@@ -43,6 +43,7 @@ message EngineDesc {
optional bool enable_memory_optimization = 13;
optional bool static_optimization = 14;
optional bool force_update_static_cache = 15;
optional bool enable_ir_optimization = 16;
};
// model_toolkit conf
......
......@@ -35,6 +35,7 @@ class InferEngineCreationParams {
InferEngineCreationParams() {
_path = "";
_enable_memory_optimization = false;
_enable_ir_optimization = false;
_static_optimization = false;
_force_update_static_cache = false;
}
......@@ -45,10 +46,16 @@ class InferEngineCreationParams {
_enable_memory_optimization = enable_memory_optimization;
}
void set_enable_ir_optimization(bool enable_ir_optimization) {
_enable_ir_optimization = enable_ir_optimization;
}
bool enable_memory_optimization() const {
return _enable_memory_optimization;
}
bool enable_ir_optimization() const { return _enable_ir_optimization; }
void set_static_optimization(bool static_optimization = false) {
_static_optimization = static_optimization;
}
......@@ -68,6 +75,7 @@ class InferEngineCreationParams {
<< "model_path = " << _path << ", "
<< "enable_memory_optimization = " << _enable_memory_optimization
<< ", "
<< "enable_ir_optimization = " << _enable_ir_optimization << ", "
<< "static_optimization = " << _static_optimization << ", "
<< "force_update_static_cache = " << _force_update_static_cache;
}
......@@ -75,6 +83,7 @@ class InferEngineCreationParams {
private:
std::string _path;
bool _enable_memory_optimization;
bool _enable_ir_optimization;
bool _static_optimization;
bool _force_update_static_cache;
};
......@@ -150,6 +159,11 @@ class ReloadableInferEngine : public InferEngine {
force_update_static_cache = conf.force_update_static_cache();
}
if (conf.has_enable_ir_optimization()) {
_infer_engine_params.set_enable_ir_optimization(
conf.enable_ir_optimization());
}
_infer_engine_params.set_path(_model_data_path);
if (enable_memory_optimization) {
_infer_engine_params.set_enable_memory_optimization(true);
......
# Performance optimization
Due to different model structures, different prediction services consume different computing resources when performing predictions. For online prediction services, models that require less computing resources will have a higher proportion of communication time cost, which is called communication-intensive service. Models that require more computing resources have a higher time cost for inference calculations, which is called computationa-intensive services.
For a prediction service, the easiest way to determine what type it is is to look at the time ratio. Paddle Serving provides [Timeline tool] (../python/examples/util/README_CN.md), which can intuitively display the time spent in each stage of the prediction service.
For communication-intensive prediction services, requests can be aggregated, and within a limit that can tolerate delay, multiple prediction requests can be combined into a batch for prediction.
For computation-intensive prediction services, you can use GPU prediction services instead of CPU prediction services, or increase the number of graphics cards for GPU prediction services.
Under the same conditions, the communication time of the HTTP prediction service provided by Paddle Serving is longer than that of the RPC prediction service, so for communication-intensive services, please give priority to using RPC communication.
Parameters for performance optimization:
| Parameters | Type | Default | Description |
| ---------- | ---- | ------- | ------------------------------------------------------------ |
| mem_optim | bool | False | Enable memory / graphic memory optimization |
| ir_optim | bool | Fasle | Enable analysis and optimization of calculation graph,including OP fusion, etc |
# 性能优化
由于模型结构的不同,在执行预测时不同的预测对计算资源的消耗也不相同,对于在线的预测服务来说,对计算资源要求较少的模型,通信的时间成本占比就会较高,称为通信密集型服务,对计算资源要求较多的模型,推理计算的时间成本较高,称为计算密集型服务。对于这两种服务类型,可以根据实际需求采取不同的方式进行优化
由于模型结构的不同,在执行预测时不同的预测服务对计算资源的消耗也不相同。对于在线的预测服务来说,对计算资源要求较少的模型,通信的时间成本占比就会较高,称为通信密集型服务,对计算资源要求较多的模型,推理计算的时间成本较高,称为计算密集型服务。对于这两种服务类型,可以根据实际需求采取不同的方式进行优化
对于一个预测服务来说,想要判断属于哪种类型,最简单的方法就是看时间占比,Paddle Serving提供了[Timeline工具](../python/examples/util/README_CN.md),可以直观的展现预测服务中各阶段的耗时。
......@@ -10,4 +10,9 @@
在相同条件下,Paddle Serving提供的HTTP预测服务的通信时间是大于RPC预测服务的,因此对于通信密集型的服务请优先考虑使用RPC的通信方式。
对于模型较大,预测服务内存或显存占用较多的情况,可以通过将--mem_optim选项设置为True来开启内存/显存优化。
性能优化相关参数:
| 参数 | 类型 | 默认值 | 含义 |
| --------- | ---- | ------ | -------------------------------- |
| mem_optim | bool | False | 开启内存/显存优化 |
| ir_optim | bool | Fasle | 开启计算图分析优化,包括OP融合等 |
......@@ -194,6 +194,12 @@ class FluidCpuAnalysisDirCore : public FluidFamilyCore {
analysis_config.EnableMemoryOptim();
}
if (params.enable_ir_optimization()) {
analysis_config.SwitchIrOptim(true);
} else {
analysis_config.SwitchIrOptim(false);
}
AutoLock lock(GlobalPaddleCreateMutex::instance());
_core =
paddle::CreatePaddlePredictor<paddle::AnalysisConfig>(analysis_config);
......
......@@ -198,6 +198,12 @@ class FluidGpuAnalysisDirCore : public FluidFamilyCore {
analysis_config.EnableMemoryOptim();
}
if (params.enable_ir_optimization()) {
analysis_config.SwitchIrOptim(true);
} else {
analysis_config.SwitchIrOptim(false);
}
AutoLock lock(GlobalPaddleCreateMutex::instance());
_core =
paddle::CreatePaddlePredictor<paddle::AnalysisConfig>(analysis_config);
......
......@@ -127,6 +127,7 @@ class Server(object):
self.model_toolkit_conf = None
self.resource_conf = None
self.memory_optimization = False
self.ir_optimization = False
self.model_conf = None
self.workflow_fn = "workflow.prototxt"
self.resource_fn = "resource.prototxt"
......@@ -175,6 +176,9 @@ class Server(object):
def set_memory_optimize(self, flag=False):
self.memory_optimization = flag
def set_ir_optimize(self, flag=False):
self.ir_optimization = flag
def check_local_bin(self):
if "SERVING_BIN" in os.environ:
self.use_local_bin = True
......@@ -195,6 +199,7 @@ class Server(object):
engine.enable_batch_align = 0
engine.model_data_path = model_config_path
engine.enable_memory_optimization = self.memory_optimization
engine.enable_ir_optimization = self.ir_optimization
engine.static_optimization = False
engine.force_update_static_cache = False
......@@ -244,7 +249,7 @@ class Server(object):
workflow_oi_config_path = None
if isinstance(model_config_paths, str):
# If there is only one model path, use the default infer_op.
# Because there are several infer_op type, we need to find
# Because there are several infer_op type, we need to find
# it from workflow_conf.
default_engine_names = [
'general_infer_0', 'general_dist_kv_infer_0',
......
......@@ -41,6 +41,8 @@ def parse_args(): # pylint: disable=doc-string-missing
"--device", type=str, default="cpu", help="Type of device")
parser.add_argument(
"--mem_optim", type=bool, default=False, help="Memory optimize")
parser.add_argument(
"--ir_optim", type=bool, default=False, help="Graph optimize")
parser.add_argument(
"--max_body_size",
type=int,
......@@ -57,6 +59,7 @@ def start_standard_model(): # pylint: disable=doc-string-missing
workdir = args.workdir
device = args.device
mem_optim = args.mem_optim
ir_optim = args.ir_optim
max_body_size = args.max_body_size
if model == "":
......@@ -78,6 +81,7 @@ def start_standard_model(): # pylint: disable=doc-string-missing
server.set_op_sequence(op_seq_maker.get_op_sequence())
server.set_num_threads(thread_num)
server.set_memory_optimize(mem_optim)
server.set_ir_optimize(ir_optim)
server.set_max_body_size(max_body_size)
server.set_port(port)
......
......@@ -47,6 +47,8 @@ def serve_args():
"--name", type=str, default="None", help="Default service name")
parser.add_argument(
"--mem_optim", type=bool, default=False, help="Memory optimize")
parser.add_argument(
"--ir_optim", type=bool, default=False, help="Graph optimize")
parser.add_argument(
"--max_body_size",
type=int,
......@@ -156,6 +158,7 @@ class Server(object):
self.model_toolkit_conf = None
self.resource_conf = None
self.memory_optimization = False
self.ir_optimization = False
self.model_conf = None
self.workflow_fn = "workflow.prototxt"
self.resource_fn = "resource.prototxt"
......@@ -204,6 +207,9 @@ class Server(object):
def set_memory_optimize(self, flag=False):
self.memory_optimization = flag
def set_ir_optimize(self, flag=False):
self.ir_optimization = flag
def check_local_bin(self):
if "SERVING_BIN" in os.environ:
self.use_local_bin = True
......@@ -240,6 +246,7 @@ class Server(object):
engine.enable_batch_align = 0
engine.model_data_path = model_config_path
engine.enable_memory_optimization = self.memory_optimization
engine.enable_ir_optimization = self.ir_optimization
engine.static_optimization = False
engine.force_update_static_cache = False
......
......@@ -35,6 +35,7 @@ def start_gpu_card_model(index, gpuid, args): # pylint: disable=doc-string-miss
thread_num = args.thread
model = args.model
mem_optim = args.mem_optim
ir_optim = args.ir_optim
max_body_size = args.max_body_size
workdir = "{}_{}".format(args.workdir, gpuid)
......@@ -57,6 +58,7 @@ def start_gpu_card_model(index, gpuid, args): # pylint: disable=doc-string-miss
server.set_op_sequence(op_seq_maker.get_op_sequence())
server.set_num_threads(thread_num)
server.set_memory_optimize(mem_optim)
server.set_ir_optimize(ir_optim)
server.set_max_body_size(max_body_size)
server.load_model_config(model)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册