Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
5d55bce1
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
185
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
5d55bce1
编写于
8月 07, 2020
作者:
B
barriery
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add logid into Op
上级
663a1717
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
65 addition
and
43 deletion
+65
-43
core/general-server/op/general_infer_helper.h
core/general-server/op/general_infer_helper.h
+4
-1
core/general-server/op/general_infer_op.cpp
core/general-server/op/general_infer_op.cpp
+9
-5
core/general-server/op/general_reader_op.cpp
core/general-server/op/general_reader_op.cpp
+30
-22
core/general-server/op/general_response_op.cpp
core/general-server/op/general_response_op.cpp
+22
-15
未找到文件。
core/general-server/op/general_infer_helper.h
浏览文件 @
5d55bce1
...
...
@@ -35,6 +35,7 @@ struct GeneralBlob {
std
::
vector
<
paddle
::
PaddleTensor
>
tensor_vector
;
int64_t
time_stamp
[
20
];
int
p_size
=
0
;
uint64_t
_log_id
=
-
1
;
// for logging
int
_batch_size
;
...
...
@@ -46,9 +47,11 @@ struct GeneralBlob {
tensor_vector
.
clear
();
}
int
SetBatchSize
(
int
batch_size
)
{
_batch_size
=
batch_size
;
}
void
SetBatchSize
(
int
batch_size
)
{
_batch_size
=
batch_size
;
}
void
SetLogId
(
uint64_t
log_id
)
{
_log_id
=
log_id
;
}
int
GetBatchSize
()
const
{
return
_batch_size
;
}
uint64_t
GetLogId
()
const
{
return
_log_id
;
}
std
::
string
ShortDebugString
()
const
{
return
"Not implemented!"
;
}
};
...
...
core/general-server/op/general_infer_op.cpp
浏览文件 @
5d55bce1
...
...
@@ -47,22 +47,25 @@ int GeneralInferOp::inference() {
const
std
::
string
pre_name
=
pre_node_names
[
0
];
const
GeneralBlob
*
input_blob
=
get_depend_argument
<
GeneralBlob
>
(
pre_name
);
VLOG
(
2
)
<<
"Get precedent op name: "
<<
pre_name
;
uint64_t
log_id
=
input_blob
->
GetLogId
();
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") Get precedent op name: "
<<
pre_name
;
GeneralBlob
*
output_blob
=
mutable_data
<
GeneralBlob
>
();
output_blob
->
SetLogId
(
log_id
);
if
(
!
input_blob
)
{
LOG
(
ERROR
)
<<
"Failed mutable depended argument, op:"
<<
pre_name
;
LOG
(
ERROR
)
<<
"(logid="
<<
log_id
<<
") Failed mutable depended argument, op:"
<<
pre_name
;
return
-
1
;
}
const
TensorVector
*
in
=
&
input_blob
->
tensor_vector
;
TensorVector
*
out
=
&
output_blob
->
tensor_vector
;
int
batch_size
=
input_blob
->
GetBatchSize
();
VLOG
(
2
)
<<
"input batch size: "
<<
batch_size
;
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
")
input batch size: "
<<
batch_size
;
output_blob
->
SetBatchSize
(
batch_size
);
VLOG
(
2
)
<<
"infer batch size: "
<<
batch_size
;
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
")
infer batch size: "
<<
batch_size
;
Timer
timeline
;
int64_t
start
=
timeline
.
TimeStampUS
();
...
...
@@ -70,7 +73,8 @@ int GeneralInferOp::inference() {
if
(
InferManager
::
instance
().
infer
(
engine_name
().
c_str
(),
in
,
out
,
batch_size
))
{
LOG
(
ERROR
)
<<
"Failed do infer in fluid model: "
<<
engine_name
().
c_str
();
LOG
(
ERROR
)
<<
"(logid="
<<
log_id
<<
") Failed do infer in fluid model: "
<<
engine_name
().
c_str
();
return
-
1
;
}
...
...
core/general-server/op/general_reader_op.cpp
浏览文件 @
5d55bce1
...
...
@@ -72,6 +72,7 @@ int conf_check(const Request *req,
int
GeneralReaderOp
::
inference
()
{
// reade request from client
const
Request
*
req
=
dynamic_cast
<
const
Request
*>
(
get_request_message
());
uint64_t
log_id
=
req
->
log_id
();
int
batch_size
=
req
->
insts_size
();
int
input_var_num
=
0
;
...
...
@@ -83,25 +84,28 @@ int GeneralReaderOp::inference() {
TensorVector
*
out
=
&
res
->
tensor_vector
;
res
->
SetBatchSize
(
batch_size
);
res
->
SetLogId
(
log_id
);
if
(
!
res
)
{
LOG
(
ERROR
)
<<
"Failed get op tls reader object output"
;
LOG
(
ERROR
)
<<
"(logid="
<<
log_id
<<
") Failed get op tls reader object output"
;
}
Timer
timeline
;
int64_t
start
=
timeline
.
TimeStampUS
();
int
var_num
=
req
->
insts
(
0
).
tensor_array_size
();
VLOG
(
2
)
<<
"var num: "
<<
var_num
;
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
")
var num: "
<<
var_num
;
VLOG
(
2
)
<<
"start to call load general model_conf op"
;
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") start to call load general model_conf op"
;
baidu
::
paddle_serving
::
predictor
::
Resource
&
resource
=
baidu
::
paddle_serving
::
predictor
::
Resource
::
instance
();
VLOG
(
2
)
<<
"get resource pointer done."
;
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
")
get resource pointer done."
;
std
::
shared_ptr
<
PaddleGeneralModelConfig
>
model_config
=
resource
.
get_general_model_config
();
VLOG
(
2
)
<<
"print general model config done."
;
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
")
print general model config done."
;
// TODO(guru4elephant): how to do conditional check?
/*
...
...
@@ -122,7 +126,8 @@ int GeneralReaderOp::inference() {
for
(
int
i
=
0
;
i
<
var_num
;
++
i
)
{
paddle
::
PaddleTensor
lod_tensor
;
elem_type
[
i
]
=
req
->
insts
(
0
).
tensor_array
(
i
).
elem_type
();
VLOG
(
2
)
<<
"var["
<<
i
<<
"] has elem type: "
<<
elem_type
[
i
];
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") var["
<<
i
<<
"] has elem type: "
<<
elem_type
[
i
];
if
(
elem_type
[
i
]
==
0
)
{
// int64
elem_size
[
i
]
=
sizeof
(
int64_t
);
lod_tensor
.
dtype
=
paddle
::
PaddleDType
::
INT64
;
...
...
@@ -137,17 +142,19 @@ int GeneralReaderOp::inference() {
if
(
model_config
->
_is_lod_feed
[
i
])
{
lod_tensor
.
lod
.
resize
(
1
);
lod_tensor
.
lod
[
0
].
push_back
(
0
);
VLOG
(
2
)
<<
"var["
<<
i
<<
"] is lod_tensor"
;
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
")
var["
<<
i
<<
"] is lod_tensor"
;
}
else
{
lod_tensor
.
shape
.
push_back
(
batch_size
);
capacity
[
i
]
=
1
;
for
(
int
k
=
0
;
k
<
req
->
insts
(
0
).
tensor_array
(
i
).
shape_size
();
++
k
)
{
int
dim
=
req
->
insts
(
0
).
tensor_array
(
i
).
shape
(
k
);
VLOG
(
2
)
<<
"shape for var["
<<
i
<<
"]: "
<<
dim
;
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") shape for var["
<<
i
<<
"]: "
<<
dim
;
capacity
[
i
]
*=
dim
;
lod_tensor
.
shape
.
push_back
(
dim
);
}
VLOG
(
2
)
<<
"var["
<<
i
<<
"] is tensor, capacity: "
<<
capacity
[
i
];
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") var["
<<
i
<<
"] is tensor, capacity: "
<<
capacity
[
i
];
}
lod_tensor
.
name
=
model_config
->
_feed_name
[
i
];
out
->
push_back
(
lod_tensor
);
...
...
@@ -167,11 +174,12 @@ int GeneralReaderOp::inference() {
}
else
if
(
tensor
.
int_data_size
()
>
0
)
{
data_len
=
tensor
.
int_data_size
();
}
VLOG
(
2
)
<<
"tensor size for var["
<<
i
<<
"]: "
<<
data_len
;
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") tensor size for var["
<<
i
<<
"]: "
<<
data_len
;
tensor_size
+=
data_len
;
int
cur_len
=
out
->
at
(
i
).
lod
[
0
].
back
();
VLOG
(
2
)
<<
"current len: "
<<
cur_len
;
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
")
current len: "
<<
cur_len
;
int
sample_len
=
0
;
if
(
tensor
.
shape_size
()
==
1
)
{
...
...
@@ -180,7 +188,7 @@ int GeneralReaderOp::inference() {
sample_len
=
tensor
.
shape
(
0
);
}
out
->
at
(
i
).
lod
[
0
].
push_back
(
cur_len
+
sample_len
);
VLOG
(
2
)
<<
"new len: "
<<
cur_len
+
sample_len
;
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
")
new len: "
<<
cur_len
+
sample_len
;
}
out
->
at
(
i
).
data
.
Resize
(
tensor_size
*
elem_size
[
i
]);
out
->
at
(
i
).
shape
=
{
out
->
at
(
i
).
lod
[
0
].
back
()};
...
...
@@ -190,11 +198,11 @@ int GeneralReaderOp::inference() {
if
(
out
->
at
(
i
).
shape
.
size
()
==
1
)
{
out
->
at
(
i
).
shape
.
push_back
(
1
);
}
VLOG
(
2
)
<<
"var["
<<
i
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
")
var["
<<
i
<<
"] is lod_tensor and len="
<<
out
->
at
(
i
).
lod
[
0
].
back
();
}
else
{
out
->
at
(
i
).
data
.
Resize
(
batch_size
*
capacity
[
i
]
*
elem_size
[
i
]);
VLOG
(
2
)
<<
"var["
<<
i
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
")
var["
<<
i
<<
"] is tensor and capacity="
<<
batch_size
*
capacity
[
i
];
}
}
...
...
@@ -203,8 +211,8 @@ int GeneralReaderOp::inference() {
for
(
int
i
=
0
;
i
<
var_num
;
++
i
)
{
if
(
elem_type
[
i
]
==
0
)
{
int64_t
*
dst_ptr
=
static_cast
<
int64_t
*>
(
out
->
at
(
i
).
data
.
data
());
VLOG
(
2
)
<<
"
first element data in var["
<<
i
<<
"] is "
<<
req
->
insts
(
0
).
tensor_array
(
i
).
int64_data
(
0
);
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
") first element data in var["
<<
i
<<
"] is "
<<
req
->
insts
(
0
).
tensor_array
(
i
).
int64_data
(
0
);
int
offset
=
0
;
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
int
elem_num
=
req
->
insts
(
j
).
tensor_array
(
i
).
int64_data_size
();
...
...
@@ -219,8 +227,8 @@ int GeneralReaderOp::inference() {
}
}
else
if
(
elem_type
[
i
]
==
1
)
{
float
*
dst_ptr
=
static_cast
<
float
*>
(
out
->
at
(
i
).
data
.
data
());
VLOG
(
2
)
<<
"
first element data in var["
<<
i
<<
"] is "
<<
req
->
insts
(
0
).
tensor_array
(
i
).
float_data
(
0
);
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
") first element data in var["
<<
i
<<
"] is "
<<
req
->
insts
(
0
).
tensor_array
(
i
).
float_data
(
0
);
int
offset
=
0
;
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
int
elem_num
=
req
->
insts
(
j
).
tensor_array
(
i
).
float_data_size
();
...
...
@@ -235,8 +243,8 @@ int GeneralReaderOp::inference() {
}
}
else
if
(
elem_type
[
i
]
==
2
)
{
int32_t
*
dst_ptr
=
static_cast
<
int32_t
*>
(
out
->
at
(
i
).
data
.
data
());
VLOG
(
2
)
<<
"
first element data in var["
<<
i
<<
"] is "
<<
req
->
insts
(
0
).
tensor_array
(
i
).
int_data
(
0
);
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
") first element data in var["
<<
i
<<
"] is "
<<
req
->
insts
(
0
).
tensor_array
(
i
).
int_data
(
0
);
int
offset
=
0
;
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
int
elem_num
=
req
->
insts
(
j
).
tensor_array
(
i
).
int_data_size
();
...
...
@@ -252,7 +260,7 @@ int GeneralReaderOp::inference() {
}
}
VLOG
(
2
)
<<
"output size: "
<<
out
->
size
();
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
")
output size: "
<<
out
->
size
();
timeline
.
Pause
();
int64_t
end
=
timeline
.
TimeStampUS
();
...
...
@@ -260,7 +268,7 @@ int GeneralReaderOp::inference() {
AddBlobInfo
(
res
,
start
);
AddBlobInfo
(
res
,
end
);
VLOG
(
2
)
<<
"read data from client success"
;
VLOG
(
2
)
<<
"
(logid="
<<
log_id
<<
")
read data from client success"
;
return
0
;
}
DEFINE_OP
(
GeneralReaderOp
);
...
...
core/general-server/op/general_response_op.cpp
浏览文件 @
5d55bce1
...
...
@@ -75,10 +75,12 @@ int GeneralResponseOp::inference() {
VLOG
(
2
)
<<
"pre names["
<<
pi
<<
"]: "
<<
pre_name
<<
" ("
<<
pre_node_names
.
size
()
<<
")"
;
input_blob
=
get_depend_argument
<
GeneralBlob
>
(
pre_name
);
uint64_t
curr_logid
=
input_blob
->
GetLogId
();
// fprintf(stderr, "input(%s) blob address %x\n", pre_names.c_str(),
// input_blob);
if
(
!
input_blob
)
{
LOG
(
ERROR
)
<<
"Failed mutable depended argument, op: "
<<
pre_name
;
LOG
(
ERROR
)
<<
"(logid="
<<
curr_logid
<<
") Failed mutable depended argument, op: "
<<
pre_name
;
return
-
1
;
}
...
...
@@ -92,17 +94,19 @@ int GeneralResponseOp::inference() {
for
(
auto
&
idx
:
fetch_index
)
{
Tensor
*
tensor
=
fetch_inst
->
add_tensor_array
();
if
(
model_config
->
_is_lod_fetch
[
idx
])
{
VLOG
(
2
)
<<
"
out["
<<
idx
<<
"] "
<<
model_config
->
_fetch_name
[
idx
]
<<
" is lod_tensor"
;
VLOG
(
2
)
<<
"
(logid="
<<
curr_logid
<<
") out["
<<
idx
<<
"] "
<<
model_config
->
_fetch_name
[
idx
]
<<
" is lod_tensor"
;
for
(
int
k
=
0
;
k
<
in
->
at
(
idx
).
shape
.
size
();
++
k
)
{
VLOG
(
2
)
<<
"shape["
<<
k
<<
"]: "
<<
in
->
at
(
idx
).
shape
[
k
];
VLOG
(
2
)
<<
"(logid="
<<
curr_logid
<<
") shape["
<<
k
<<
"]: "
<<
in
->
at
(
idx
).
shape
[
k
];
tensor
->
add_shape
(
in
->
at
(
idx
).
shape
[
k
]);
}
}
else
{
VLOG
(
2
)
<<
"
out["
<<
idx
<<
"] "
<<
model_config
->
_fetch_name
[
idx
]
<<
" is tensor"
;
VLOG
(
2
)
<<
"
(logid="
<<
curr_logid
<<
") out["
<<
idx
<<
"] "
<<
model_config
->
_fetch_name
[
idx
]
<<
" is tensor"
;
for
(
int
k
=
0
;
k
<
in
->
at
(
idx
).
shape
.
size
();
++
k
)
{
VLOG
(
2
)
<<
"shape["
<<
k
<<
"]: "
<<
in
->
at
(
idx
).
shape
[
k
];
VLOG
(
2
)
<<
"(logid="
<<
curr_logid
<<
") shape["
<<
k
<<
"]: "
<<
in
->
at
(
idx
).
shape
[
k
];
tensor
->
add_shape
(
in
->
at
(
idx
).
shape
[
k
]);
}
}
...
...
@@ -119,8 +123,8 @@ int GeneralResponseOp::inference() {
auto
dtype
=
in
->
at
(
idx
).
dtype
;
if
(
dtype
==
paddle
::
PaddleDType
::
INT64
)
{
VLOG
(
2
)
<<
"
Prepare int64 var ["
<<
model_config
->
_fetch_name
[
idx
]
<<
"]."
;
VLOG
(
2
)
<<
"
(logid="
<<
curr_logid
<<
") Prepare int64 var ["
<<
model_config
->
_fetch_name
[
idx
]
<<
"]."
;
int64_t
*
data_ptr
=
static_cast
<
int64_t
*>
(
in
->
at
(
idx
).
data
.
data
());
// from
// https://stackoverflow.com/questions/15499641/copy-a-stdvector-to-a-repeated-field-from-protobuf-with-memcpy
...
...
@@ -130,16 +134,16 @@ int GeneralResponseOp::inference() {
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
mutable_int64_data
()
->
Swap
(
&
tmp_data
);
}
else
if
(
dtype
==
paddle
::
PaddleDType
::
FLOAT32
)
{
VLOG
(
2
)
<<
"
Prepare float var ["
<<
model_config
->
_fetch_name
[
idx
]
<<
"]."
;
VLOG
(
2
)
<<
"
(logid="
<<
curr_logid
<<
") Prepare float var ["
<<
model_config
->
_fetch_name
[
idx
]
<<
"]."
;
float
*
data_ptr
=
static_cast
<
float
*>
(
in
->
at
(
idx
).
data
.
data
());
google
::
protobuf
::
RepeatedField
<
float
>
tmp_data
(
data_ptr
,
data_ptr
+
cap
);
fetch_p
->
mutable_tensor_array
(
var_idx
)
->
mutable_float_data
()
->
Swap
(
&
tmp_data
);
}
else
if
(
dtype
==
paddle
::
PaddleDType
::
INT32
)
{
VLOG
(
2
)
<<
"
Prepare int32 var ["
<<
model_config
->
_fetch_name
[
idx
]
<<
"]."
;
VLOG
(
2
)
<<
"
(logid="
<<
curr_logid
<<
")Prepare int32 var ["
<<
model_config
->
_fetch_name
[
idx
]
<<
"]."
;
int32_t
*
data_ptr
=
static_cast
<
int32_t
*>
(
in
->
at
(
idx
).
data
.
data
());
google
::
protobuf
::
RepeatedField
<
int32_t
>
tmp_data
(
data_ptr
,
data_ptr
+
cap
);
...
...
@@ -154,7 +158,8 @@ int GeneralResponseOp::inference() {
}
}
VLOG
(
2
)
<<
"fetch var ["
<<
model_config
->
_fetch_name
[
idx
]
<<
"] ready"
;
VLOG
(
2
)
<<
"(logid="
<<
curr_logid
<<
") fetch var ["
<<
model_config
->
_fetch_name
[
idx
]
<<
"] ready"
;
var_idx
++
;
}
}
...
...
@@ -167,7 +172,9 @@ int GeneralResponseOp::inference() {
// a more elegant way.
for
(
uint32_t
pi
=
0
;
pi
<
pre_node_names
.
size
();
++
pi
)
{
input_blob
=
get_depend_argument
<
GeneralBlob
>
(
pre_node_names
[
pi
]);
VLOG
(
2
)
<<
"p size for input blob: "
<<
input_blob
->
p_size
;
uint64_t
curr_logid
=
input_blob
->
GetLogId
();
VLOG
(
2
)
<<
"(logid="
<<
curr_logid
<<
") p size for input blob: "
<<
input_blob
->
p_size
;
int
profile_time_idx
=
-
1
;
if
(
pi
==
0
)
{
profile_time_idx
=
0
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录