未验证 提交 5c5ce513 编写于 作者: T TeslaZhao 提交者: GitHub

Merge branch 'PaddlePaddle:develop' into develop

......@@ -62,7 +62,7 @@ This chapter guides you through the installation and deployment steps. It is str
- [Build Paddle Serving from Source with Docker](doc/Compile_EN.md)
- [Deploy Paddle Serving on Kubernetes(Chinese)](doc/Run_On_Kubernetes_CN.md)
- [Deploy Paddle Serving with Security gateway(Chinese)](doc/Serving_Auth_Docker_CN.md)
- Deploy on more hardwares[[百度昆仑](doc/Run_On_XPU_CN.md)[华为昇腾](doc/Run_On_NPU_CN.md)[海光DCU](doc/Run_On_DCU_CN.md)[Jetson](doc/Run_On_JETSON_CN.md)]
- Deploy on more hardwares[[ARM CPU、百度昆仑](doc/Run_On_XPU_EN.md)[华为昇腾](doc/Run_On_NPU_CN.md)[海光DCU](doc/Run_On_DCU_CN.md)[Jetson](doc/Run_On_JETSON_CN.md)]
- [Docker Images](doc/Docker_Images_EN.md)
- [Download Wheel packages](doc/Latest_Packages_EN.md)
......
......@@ -34,7 +34,7 @@ Paddle Serving依托深度学习框架PaddlePaddle旨在帮助深度学习开发
- 集成Intel MKLDNN、Nvidia TensorRT加速库,以及低精度和量化推理
- 提供一套模型安全部署解决方案,包括加密模型部署、鉴权校验、HTTPs安全网关,并在实际项目中应用
- 支持云端部署,提供百度云智能云kubernetes集群部署Paddle Serving案例
- 提供丰富的经典模型部署示例,如PaddleOCR、PaddleClas、PaddleDetection、PaddleSeg、PaddleNLP、PaddleRec等套件,共计40+个预训练精品模型
- 提供丰富的经典模型部署示例,如PaddleOCR、PaddleClas、PaddleDetection、PaddleSeg、PaddleNLP、PaddleRec等套件,共计40+个预训练精品模型
- 支持大规模稀疏参数索引模型分布式部署,具有多表、多分片、多副本、本地高频cache等特性、可单机或云端部署
- 支持服务监控,提供基于普罗米修斯的性能数据统计及端口访问
......@@ -58,7 +58,7 @@ Paddle Serving依托深度学习框架PaddlePaddle旨在帮助深度学习开发
- [源码编译安装Paddle Serving](doc/Compile_CN.md)
- [在Kuberntes集群上部署Paddle Serving](doc/Run_On_Kubernetes_CN.md)
- [部署Paddle Serving安全网关](doc/Serving_Auth_Docker_CN.md)
- 异构硬件部署[[百度昆仑](doc/Run_On_XPU_CN.md)[华为昇腾](doc/Run_On_NPU_CN.md)[海光DCU](doc/Run_On_DCU_CN.md)[Jetson](doc/Run_On_JETSON_CN.md)]
- 异构硬件部署[[ARM CPU、百度昆仑](doc/Run_On_XPU_CN.md)[华为昇腾](doc/Run_On_NPU_CN.md)[海光DCU](doc/Run_On_DCU_CN.md)[Jetson](doc/Run_On_JETSON_CN.md)]
- [Docker镜像](doc/Docker_Images_CN.md)
- [下载Wheel包](doc/Latest_Packages_CN.md)
......
......@@ -62,6 +62,8 @@ pip3 install -r python/requirements.txt
Install the service whl package. There are three types of client, app and server. The server is divided into CPU and GPU. Choose one installation according to the environment.
- GPU with CUDA10.2 + Cudnn7 + TensorRT6(Recommended)
- post101 = CUDA10.1 + TensorRT6
- post112 = CUDA11.2 + TensorRT8
```shell
pip3 install paddle-serving-client==0.8.2 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install paddle-serving-app==0.8.2 -i https://pypi.tuna.tsinghua.edu.cn/simple
......
# Serving Configuration
# Serving Configuration & Startup Params
([简体中文](./Serving_Configure_CN.md)|English)
## Overview
......
doc/images/wechat_group_1.jpeg

337.9 KB | W: | H:

doc/images/wechat_group_1.jpeg

120.4 KB | W: | H:

doc/images/wechat_group_1.jpeg
doc/images/wechat_group_1.jpeg
doc/images/wechat_group_1.jpeg
doc/images/wechat_group_1.jpeg
  • 2-up
  • Swipe
  • Onion skin
0 abseiling
1 air_drumming
2 answering_questions
3 applauding
4 applying_cream
5 archery
6 arm_wrestling
7 arranging_flowers
8 assembling_computer
9 auctioning
10 baby_waking_up
11 baking_cookies
12 balloon_blowing
13 bandaging
14 barbequing
15 bartending
16 beatboxing
17 bee_keeping
18 belly_dancing
19 bench_pressing
20 bending_back
21 bending_metal
22 biking_through_snow
23 blasting_sand
24 blowing_glass
25 blowing_leaves
26 blowing_nose
27 blowing_out_candles
28 bobsledding
29 bookbinding
30 bouncing_on_trampoline
31 bowling
32 braiding_hair
33 breading_or_breadcrumbing
34 breakdancing
35 brush_painting
36 brushing_hair
37 brushing_teeth
38 building_cabinet
39 building_shed
40 bungee_jumping
41 busking
42 canoeing_or_kayaking
43 capoeira
44 carrying_baby
45 cartwheeling
46 carving_pumpkin
47 catching_fish
48 catching_or_throwing_baseball
49 catching_or_throwing_frisbee
50 catching_or_throwing_softball
51 celebrating
52 changing_oil
53 changing_wheel
54 checking_tires
55 cheerleading
56 chopping_wood
57 clapping
58 clay_pottery_making
59 clean_and_jerk
60 cleaning_floor
61 cleaning_gutters
62 cleaning_pool
63 cleaning_shoes
64 cleaning_toilet
65 cleaning_windows
66 climbing_a_rope
67 climbing_ladder
68 climbing_tree
69 contact_juggling
70 cooking_chicken
71 cooking_egg
72 cooking_on_campfire
73 cooking_sausages
74 counting_money
75 country_line_dancing
76 cracking_neck
77 crawling_baby
78 crossing_river
79 crying
80 curling_hair
81 cutting_nails
82 cutting_pineapple
83 cutting_watermelon
84 dancing_ballet
85 dancing_charleston
86 dancing_gangnam_style
87 dancing_macarena
88 deadlifting
89 decorating_the_christmas_tree
90 digging
91 dining
92 disc_golfing
93 diving_cliff
94 dodgeball
95 doing_aerobics
96 doing_laundry
97 doing_nails
98 drawing
99 dribbling_basketball
100 drinking
101 drinking_beer
102 drinking_shots
103 driving_car
104 driving_tractor
105 drop_kicking
106 drumming_fingers
107 dunking_basketball
108 dying_hair
109 eating_burger
110 eating_cake
111 eating_carrots
112 eating_chips
113 eating_doughnuts
114 eating_hotdog
115 eating_ice_cream
116 eating_spaghetti
117 eating_watermelon
118 egg_hunting
119 exercising_arm
120 exercising_with_an_exercise_ball
121 extinguishing_fire
122 faceplanting
123 feeding_birds
124 feeding_fish
125 feeding_goats
126 filling_eyebrows
127 finger_snapping
128 fixing_hair
129 flipping_pancake
130 flying_kite
131 folding_clothes
132 folding_napkins
133 folding_paper
134 front_raises
135 frying_vegetables
136 garbage_collecting
137 gargling
138 getting_a_haircut
139 getting_a_tattoo
140 giving_or_receiving_award
141 golf_chipping
142 golf_driving
143 golf_putting
144 grinding_meat
145 grooming_dog
146 grooming_horse
147 gymnastics_tumbling
148 hammer_throw
149 headbanging
150 headbutting
151 high_jump
152 high_kick
153 hitting_baseball
154 hockey_stop
155 holding_snake
156 hopscotch
157 hoverboarding
158 hugging
159 hula_hooping
160 hurdling
161 hurling_(sport)
162 ice_climbing
163 ice_fishing
164 ice_skating
165 ironing
166 javelin_throw
167 jetskiing
168 jogging
169 juggling_balls
170 juggling_fire
171 juggling_soccer_ball
172 jumping_into_pool
173 jumpstyle_dancing
174 kicking_field_goal
175 kicking_soccer_ball
176 kissing
177 kitesurfing
178 knitting
179 krumping
180 laughing
181 laying_bricks
182 long_jump
183 lunge
184 making_a_cake
185 making_a_sandwich
186 making_bed
187 making_jewelry
188 making_pizza
189 making_snowman
190 making_sushi
191 making_tea
192 marching
193 massaging_back
194 massaging_feet
195 massaging_legs
196 massaging_person's_head
197 milking_cow
198 mopping_floor
199 motorcycling
200 moving_furniture
201 mowing_lawn
202 news_anchoring
203 opening_bottle
204 opening_present
205 paragliding
206 parasailing
207 parkour
208 passing_American_football_(in_game)
209 passing_American_football_(not_in_game)
210 peeling_apples
211 peeling_potatoes
212 petting_animal_(not_cat)
213 petting_cat
214 picking_fruit
215 planting_trees
216 plastering
217 playing_accordion
218 playing_badminton
219 playing_bagpipes
220 playing_basketball
221 playing_bass_guitar
222 playing_cards
223 playing_cello
224 playing_chess
225 playing_clarinet
226 playing_controller
227 playing_cricket
228 playing_cymbals
229 playing_didgeridoo
230 playing_drums
231 playing_flute
232 playing_guitar
233 playing_harmonica
234 playing_harp
235 playing_ice_hockey
236 playing_keyboard
237 playing_kickball
238 playing_monopoly
239 playing_organ
240 playing_paintball
241 playing_piano
242 playing_poker
243 playing_recorder
244 playing_saxophone
245 playing_squash_or_racquetball
246 playing_tennis
247 playing_trombone
248 playing_trumpet
249 playing_ukulele
250 playing_violin
251 playing_volleyball
252 playing_xylophone
253 pole_vault
254 presenting_weather_forecast
255 pull_ups
256 pumping_fist
257 pumping_gas
258 punching_bag
259 punching_person_(boxing)
260 push_up
261 pushing_car
262 pushing_cart
263 pushing_wheelchair
264 reading_book
265 reading_newspaper
266 recording_music
267 riding_a_bike
268 riding_camel
269 riding_elephant
270 riding_mechanical_bull
271 riding_mountain_bike
272 riding_mule
273 riding_or_walking_with_horse
274 riding_scooter
275 riding_unicycle
276 ripping_paper
277 robot_dancing
278 rock_climbing
279 rock_scissors_paper
280 roller_skating
281 running_on_treadmill
282 sailing
283 salsa_dancing
284 sanding_floor
285 scrambling_eggs
286 scuba_diving
287 setting_table
288 shaking_hands
289 shaking_head
290 sharpening_knives
291 sharpening_pencil
292 shaving_head
293 shaving_legs
294 shearing_sheep
295 shining_shoes
296 shooting_basketball
297 shooting_goal_(soccer)
298 shot_put
299 shoveling_snow
300 shredding_paper
301 shuffling_cards
302 side_kick
303 sign_language_interpreting
304 singing
305 situp
306 skateboarding
307 ski_jumping
308 skiing_(not_slalom_or_crosscountry)
309 skiing_crosscountry
310 skiing_slalom
311 skipping_rope
312 skydiving
313 slacklining
314 slapping
315 sled_dog_racing
316 smoking
317 smoking_hookah
318 snatch_weight_lifting
319 sneezing
320 sniffing
321 snorkeling
322 snowboarding
323 snowkiting
324 snowmobiling
325 somersaulting
326 spinning_poi
327 spray_painting
328 spraying
329 springboard_diving
330 squat
331 sticking_tongue_out
332 stomping_grapes
333 stretching_arm
334 stretching_leg
335 strumming_guitar
336 surfing_crowd
337 surfing_water
338 sweeping_floor
339 swimming_backstroke
340 swimming_breast_stroke
341 swimming_butterfly_stroke
342 swing_dancing
343 swinging_legs
344 swinging_on_something
345 sword_fighting
346 tai_chi
347 taking_a_shower
348 tango_dancing
349 tap_dancing
350 tapping_guitar
351 tapping_pen
352 tasting_beer
353 tasting_food
354 testifying
355 texting
356 throwing_axe
357 throwing_ball
358 throwing_discus
359 tickling
360 tobogganing
361 tossing_coin
362 tossing_salad
363 training_dog
364 trapezing
365 trimming_or_shaving_beard
366 trimming_trees
367 triple_jump
368 tying_bow_tie
369 tying_knot_(not_on_a_tie)
370 tying_tie
371 unboxing
372 unloading_truck
373 using_computer
374 using_remote_controller_(not_gaming)
375 using_segway
376 vault
377 waiting_in_line
378 walking_the_dog
379 washing_dishes
380 washing_feet
381 washing_hair
382 washing_hands
383 water_skiing
384 water_sliding
385 watering_plants
386 waxing_back
387 waxing_chest
388 waxing_eyebrows
389 waxing_legs
390 weaving_basket
391 welding
392 whistling
393 windsurfing
394 wrapping_present
395 wrestling
396 writing
397 yawning
398 yoga
399 zumba
#rpc端口, rpc_port和http_port不允许同时为空。当rpc_port为空且http_port不为空时,会自动将rpc_port设置为http_port+1
rpc_port: 18090
#http端口, rpc_port和http_port不允许同时为空。当rpc_port可用且http_port为空时,不自动生成http_port
http_port: 9999
#worker_num, 最大并发数。当build_dag_each_worker=True时, 框架会创建worker_num个进程,每个进程内构建grpcSever和DAG
##当build_dag_each_worker=False时,框架会设置主线程grpc线程池的max_workers=worker_num
worker_num: 20
#build_dag_each_worker, False,框架在进程内创建一条DAG;True,框架会每个进程内创建多个独立的DAG
build_dag_each_worker: false
dag:
#op资源类型, True, 为线程模型;False,为进程模型
is_thread_op: False
#重试次数
retry: 1
#使用性能分析, True,生成Timeline性能数据,对性能有一定影响;False为不使用
use_profile: false
tracer:
interval_s: 10
op:
ppTSN:
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
concurrency: 1
#当op配置没有server_endpoints时,从local_service_conf读取本地服务配置
local_service_conf:
#client类型,包括brpc, grpc和local_predictor.local_predictor不启动Serving服务,进程内预测
client_type: local_predictor
#det模型路径
model_config: serving_server
#Fetch结果列表,以client_config中fetch_var的alias_name为准
fetch_list: ["linear_1.tmp_1"]
# device_type, 0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu
device_type: 1
#计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
devices: "0"
#use_mkldnn
#use_mkldnn: True
#thread_num
thread_num: 2
#ir_optim
ir_optim: True
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/model/PaddleVideo/PPTSN_K400.tar
tar -xvf PPTSN_K400.tar
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# from paddle_serving_server.pipeline import PipelineClient
import requests
import json
url = "http://127.0.0.1:9999/ppTSN/prediction"
video_url = "https://paddle-serving.bj.bcebos.com/huangjianhui04/example.avi"
for i in range(4):
data = {"key": ["filename"], "value": [video_url]}
r = requests.post(url=url, data=json.dumps(data))
print(r.json())
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_server.web_service import WebService, Op
import logging
import numpy as np
import cv2
import base64
from paddle_serving_app.reader import VideoDecoder, Sampler, Scale, TenCrop, Image2Array, Normalization
import urllib.request
_LOGGER = logging.getLogger()
class ppTSNOp(Op):
def init_op(self,
num_seg=25,
seg_len=1,
short_size=256,
target_size=224,
top_k=1):
self.top_k = top_k
img_mean = [0.485, 0.456, 0.406]
img_std = [0.229, 0.224, 0.225]
self.ops = [
VideoDecoder(),
Sampler(num_seg, seg_len, valid_mode=True, select_left=True),
Scale(short_size, fixed_ratio=True, do_round=True, backend='cv2'),
TenCrop(target_size),
Image2Array(),
Normalization(img_mean, img_std)
]
self.label_dict = {}
with open("Kinetics-400_label_list.txt") as fin:
for line in fin:
label_list = line.strip().split(" ")
index = int(label_list[0])
label = label_list[1]
self.label_dict[index] = label
def preprocess(self, input_dicts, data_id, log_id):
(_, input_dict), = input_dicts.items()
self.input_file = []
for key in input_dict.keys():
try:
filename = urllib.request.urlretrieve(input_dict[key], key)
self.input_file.append(filename[0])
print("download video success")
except:
print("download video failed")
batched_inputs = []
for filename in self.input_file:
results = {'filename': filename}
for op in self.ops:
results = op(results)
res = np.expand_dims(results['imgs'], axis=0).copy()
batched_inputs.append(res)
batched_inputs = [
np.concatenate([item[i] for item in batched_inputs])
for i in range(len(batched_inputs[0]))
]
return {"data_batch_0": batched_inputs[0]}, False, None, ""
def postprocess(self, input_dicts, fetch_dict, data_id, log_id):
output = fetch_dict["linear_1.tmp_1"]
if not isinstance(self.input_file, list):
self.input_file = [
self.input_file,
]
N = len(self.input_file)
if output.shape[0] != N:
output = output.reshape([N] + [output.shape[0] // N] +
list(output.shape[1:])) # [N, T, C]
output = output.mean(axis=1) # [N, C]
import paddle
import paddle.nn.functional as F
output = F.softmax(paddle.to_tensor(output), axis=-1).numpy()
for i in range(N):
classes = np.argpartition(output[i], -self.top_k)[-self.top_k:]
classes = classes[np.argsort(-output[i, classes])]
labels = [self.label_dict[label] for label in classes.tolist()]
scores = output[i, classes]
res = {"res" :"class: {} score: {}".format(labels, scores)}
return res, None, ""
class ppTSNService(WebService):
def get_pipeline_response(self, read_op):
ppTSN_op = ppTSNOp(name="ppTSN", input_ops=[read_op])
return ppTSN_op
pptsn_service = ppTSNService(name="ppTSN")
pptsn_service.prepare_pipeline_config("config.yml")
pptsn_service.run_service()
......@@ -21,3 +21,4 @@ from .lac_reader import LACReader
from .senta_reader import SentaReader
#from .imdb_reader import IMDBDataset
from .ocr_reader import OCRReader
from .pptsn_reader import VideoDecoder, Sampler, Scale, TenCrop, Image2Array, Normalization
此差异已折叠。
......@@ -23,3 +23,6 @@ opencv-python; platform_machine == "aarch64"
pytest==7.0.1
prometheus-client==0.12.0
pillow==8.4.0
av==8.0.3
decord==0.4.2
SimpleITK
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册