提交 5b519a4b 编写于 作者: M MRXLT

fix conflict

......@@ -7,6 +7,7 @@
<p>
<p align="center">
<br>
<a href="https://travis-ci.com/PaddlePaddle/Serving">
......@@ -29,7 +30,7 @@ We consider deploying deep learning inference service online to be a user-facing
<h2 align="center">Installation</h2>
We **highly recommend** you to **run Paddle Serving in Docker**, please visit [Run in Docker](https://github.com/PaddlePaddle/Serving/blob/develop/doc/RUN_IN_DOCKER.md)
We **highly recommend** you to **run Paddle Serving in Docker**, please visit [Run in Docker](https://github.com/PaddlePaddle/Serving/blob/develop/doc/RUN_IN_DOCKER.md). See the [document](doc/DOCKER_IMAGES.md) for more docker images.
```
# Run CPU Docker
docker pull hub.baidubce.com/paddlepaddle/serving:latest
......@@ -38,8 +39,8 @@ docker exec -it test bash
```
```
# Run GPU Docker
nvidia-docker pull hub.baidubce.com/paddlepaddle/serving:latest-gpu
nvidia-docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:latest-gpu
nvidia-docker pull hub.baidubce.com/paddlepaddle/serving:latest-cuda9.0-cudnn7
nvidia-docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:latest-cuda9.0-cudnn7
nvidia-docker exec -it test bash
```
......@@ -58,6 +59,15 @@ Packages of Paddle Serving support Centos 6/7 and Ubuntu 16/18, or you can use H
<h2 align="center"> Pre-built services with Paddle Serving</h2>
<h3 align="center">Latest release</h4>
<p align="center">
<a href="https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/ocr">Optical Character Recognition</a>
<br>
<a href="https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/faster_rcnn_model">Object Detection</a>
<br>
<a href="https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/deeplabv3">Image Segmentation</a>
<p>
<h3 align="center">Chinese Word Segmentation</h4>
``` shell
......@@ -75,7 +85,7 @@ Packages of Paddle Serving support Centos 6/7 and Ubuntu 16/18, or you can use H
<img src='https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg' width = "200" height = "200">
<br>
<p>
``` shell
> python -m paddle_serving_app.package --get_model resnet_v2_50_imagenet
> tar -xzf resnet_v2_50_imagenet.tar.gz
......@@ -184,6 +194,7 @@ Here, `client.predict` function has two arguments. `feed` is a `python dict` wit
<h2 align="center">Community</h2>
### Slack
To connect with other users and contributors, welcome to join our [Slack channel](https://paddleserving.slack.com/archives/CUBPKHKMJ)
......
......@@ -7,6 +7,7 @@
<p>
<p align="center">
<br>
<a href="https://travis-ci.com/PaddlePaddle/Serving">
......@@ -31,7 +32,7 @@ Paddle Serving 旨在帮助深度学习开发者轻易部署在线预测服务
<h2 align="center">安装</h2>
**强烈建议**您在**Docker内构建**Paddle Serving,请查看[如何在Docker中运行PaddleServing](doc/RUN_IN_DOCKER_CN.md)
**强烈建议**您在**Docker内构建**Paddle Serving,请查看[如何在Docker中运行PaddleServing](doc/RUN_IN_DOCKER_CN.md)。更多镜像请查看[Docker镜像列表](doc/DOCKER_IMAGES_CN.md)
```
# 启动 CPU Docker
......@@ -41,8 +42,8 @@ docker exec -it test bash
```
```
# 启动 GPU Docker
nvidia-docker pull hub.baidubce.com/paddlepaddle/serving:latest-gpu
nvidia-docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:latest-gpu
nvidia-docker pull hub.baidubce.com/paddlepaddle/serving:latest-cuda9.0-cudnn7
nvidia-docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:latest-cuda9.0-cudnn7
nvidia-docker exec -it test bash
```
```shell
......@@ -76,7 +77,7 @@ Paddle Serving安装包支持Centos 6/7和Ubuntu 16/18,或者您可以使用HT
<img src='https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg' width = "200" height = "200">
<br>
<p>
``` shell
> python -m paddle_serving_app.package --get_model resnet_v2_50_imagenet
> tar -xzf resnet_v2_50_imagenet.tar.gz
......
......@@ -143,7 +143,6 @@ function(grpc_protobuf_generate_python SRCS)
set(${SRCS} ${${SRCS}} PARENT_SCOPE)
endfunction()
# Print and set the protobuf library information,
# finish this cmake process and exit from this file.
macro(PROMPT_PROTOBUF_LIB)
......
......@@ -86,6 +86,7 @@ add_custom_command(TARGET general_model_config_py_proto POST_BUILD
COMMAND cp *.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server/proto
COMMENT "Copy generated general_model_config proto file into directory paddle_serving_server/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
add_custom_command(TARGET multi_lang_general_model_service_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server/proto
COMMAND cp *.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server/proto
......
......@@ -14,6 +14,10 @@
syntax = "proto2";
option java_multiple_files = true;
option java_package = "io.paddle.serving.grpc";
option java_outer_classname = "ServingProto";
message Tensor {
optional bytes data = 1;
repeated int32 int_data = 2;
......@@ -28,16 +32,17 @@ message FeedInst { repeated Tensor tensor_array = 1; };
message FetchInst { repeated Tensor tensor_array = 1; };
message Request {
message InferenceRequest {
repeated FeedInst insts = 1;
repeated string feed_var_names = 2;
repeated string fetch_var_names = 3;
required bool is_python = 4 [ default = false ];
};
message Response {
message InferenceResponse {
repeated ModelOutput outputs = 1;
optional string tag = 2;
required int32 err_code = 3;
};
message ModelOutput {
......@@ -45,6 +50,17 @@ message ModelOutput {
optional string engine_name = 2;
}
message SetTimeoutRequest { required int32 timeout_ms = 1; }
message SimpleResponse { required int32 err_code = 1; }
message GetClientConfigRequest {}
message GetClientConfigResponse { required string client_config_str = 1; }
service MultiLangGeneralModelService {
rpc inference(Request) returns (Response) {}
rpc Inference(InferenceRequest) returns (InferenceResponse) {}
rpc SetTimeout(SetTimeoutRequest) returns (SimpleResponse) {}
rpc GetClientConfig(GetClientConfigRequest)
returns (GetClientConfigResponse) {}
};
......@@ -13,6 +13,7 @@
// limitations under the License.
#include <gflags/gflags.h>
#include <algorithm>
#include <atomic>
#include <fstream>
#include <thread> //NOLINT
......@@ -31,8 +32,9 @@ DEFINE_bool(print_output, false, "print output flag");
DEFINE_int32(thread_num, 1, "thread num");
std::atomic<int> g_concurrency(0);
std::vector<uint64_t> time_list;
std::vector<std::vector<uint64_t>> time_list;
std::vector<uint64_t> request_list;
int turns = 1000;
namespace {
inline uint64_t time_diff(const struct timeval& start_time,
......@@ -93,14 +95,15 @@ int run(int argc, char** argv, int thread_id) {
uint64_t file_size = key_list.size();
uint64_t index = 0;
uint64_t request = 0;
while (g_concurrency.load() >= FLAGS_thread_num) {
}
g_concurrency++;
while (index < file_size) {
time_list[thread_id].resize(turns);
while (request < turns) {
// uint64_t key = strtoul(buffer, NULL, 10);
if (index >= file_size) {
index = 0;
}
keys.push_back(key_list[index]);
index += 1;
int ret = 0;
......@@ -121,47 +124,12 @@ int run(int argc, char** argv, int thread_id) {
}
++seek_counter;
uint64_t seek_cost = time_diff(seek_start, seek_end);
seek_cost_total += seek_cost;
if (seek_cost > seek_cost_max) {
seek_cost_max = seek_cost;
}
if (seek_cost < seek_cost_min) {
seek_cost_min = seek_cost;
}
time_list[thread_id][request - 1] = seek_cost;
keys.clear();
values.clear();
}
}
/*
if (keys.size() > 0) {
int ret = 0;
values.resize(keys.size());
TIME_FLAG(seek_start);
ret = cube->seek(FLAGS_dict, keys, &values);
TIME_FLAG(seek_end);
if (ret != 0) {
LOG(WARNING) << "cube seek failed";
} else if (FLAGS_print_output) {
for (size_t i = 0; i < keys.size(); ++i) {
fprintf(stdout,
"key:%lu value:%s\n",
keys[i],
string_to_hex(values[i].buff).c_str());
}
}
++seek_counter;
uint64_t seek_cost = time_diff(seek_start, seek_end);
seek_cost_total += seek_cost;
if (seek_cost > seek_cost_max) {
seek_cost_max = seek_cost;
}
if (seek_cost < seek_cost_min) {
seek_cost_min = seek_cost;
}
}
*/
g_concurrency--;
// fclose(key_file);
......@@ -171,12 +139,6 @@ int run(int argc, char** argv, int thread_id) {
LOG(WARNING) << "destroy cube api failed err=" << ret;
}
uint64_t seek_cost_avg = seek_cost_total / seek_counter;
LOG(INFO) << "seek cost avg = " << seek_cost_avg;
LOG(INFO) << "seek cost max = " << seek_cost_max;
LOG(INFO) << "seek cost min = " << seek_cost_min;
time_list[thread_id] = seek_cost_avg;
request_list[thread_id] = request;
return 0;
......@@ -188,6 +150,7 @@ int run_m(int argc, char** argv) {
request_list.resize(thread_num);
time_list.resize(thread_num);
std::vector<std::thread*> thread_pool;
TIME_FLAG(main_start);
for (int i = 0; i < thread_num; i++) {
thread_pool.push_back(new std::thread(run, argc, argv, i));
}
......@@ -195,28 +158,43 @@ int run_m(int argc, char** argv) {
thread_pool[i]->join();
delete thread_pool[i];
}
TIME_FLAG(main_end);
uint64_t sum_time = 0;
uint64_t max_time = 0;
uint64_t min_time = 1000000;
uint64_t request_num = 0;
std::vector<uint64_t> all_time_list;
for (int i = 0; i < thread_num; i++) {
sum_time += time_list[i];
if (time_list[i] > max_time) {
max_time = time_list[i];
}
if (time_list[i] < min_time) {
min_time = time_list[i];
for (int j = 0; j < request_list[i]; j++) {
sum_time += time_list[i][j];
if (time_list[i][j] > max_time) {
max_time = time_list[i][j];
}
if (time_list[i][j] < min_time) {
min_time = time_list[i][j];
}
all_time_list.push_back(time_list[i][j]);
}
request_num += request_list[i];
}
uint64_t mean_time = sum_time / thread_num;
LOG(INFO) << thread_num << " thread seek cost"
<< " avg = " << std::to_string(mean_time)
<< " max = " << std::to_string(max_time)
<< " min = " << std::to_string(min_time);
LOG(INFO) << " total_request = " << std::to_string(request_num) << " speed = "
<< std::to_string(1000000 * thread_num / mean_time) // mean_time us
<< " query per second";
std::sort(all_time_list.begin(), all_time_list.end());
uint64_t mean_time = sum_time / (thread_num * turns);
uint64_t main_time = time_diff(main_start, main_end);
uint64_t request_num = turns * thread_num;
LOG(INFO)
<< "\n"
<< thread_num << " thread seek cost"
<< "\navg: " << std::to_string(mean_time) << "\n50 percent: "
<< std::to_string(all_time_list[static_cast<int>(0.5 * request_num)])
<< "\n80 percent: "
<< std::to_string(all_time_list[static_cast<int>(0.8 * request_num)])
<< "\n90 percent: "
<< std::to_string(all_time_list[static_cast<int>(0.9 * request_num)])
<< "\n99 percent: "
<< std::to_string(all_time_list[static_cast<int>(0.99 * request_num)])
<< "\n99.9 percent: "
<< std::to_string(all_time_list[static_cast<int>(0.999 * request_num)])
<< "\ntotal_request: " << std::to_string(request_num) << "\nspeed: "
<< std::to_string(turns * 1000000 / main_time) // mean_time us
<< " query per second";
return 0;
}
......
......@@ -49,6 +49,8 @@ class ModelRes {
res._int64_value_map.end());
_float_value_map.insert(res._float_value_map.begin(),
res._float_value_map.end());
_int32_value_map.insert(res._int32_value_map.begin(),
res._int32_value_map.end());
_shape_map.insert(res._shape_map.begin(), res._shape_map.end());
_lod_map.insert(res._lod_map.begin(), res._lod_map.end());
}
......@@ -60,6 +62,9 @@ class ModelRes {
_float_value_map.insert(
std::make_move_iterator(std::begin(res._float_value_map)),
std::make_move_iterator(std::end(res._float_value_map)));
_int32_value_map.insert(
std::make_move_iterator(std::begin(res._int32_value_map)),
std::make_move_iterator(std::end(res._int32_value_map)));
_shape_map.insert(std::make_move_iterator(std::begin(res._shape_map)),
std::make_move_iterator(std::end(res._shape_map)));
_lod_map.insert(std::make_move_iterator(std::begin(res._lod_map)),
......@@ -78,6 +83,12 @@ class ModelRes {
std::vector<float>&& get_float_by_name_with_rv(const std::string& name) {
return std::move(_float_value_map[name]);
}
const std::vector<int32_t>& get_int32_by_name(const std::string& name) {
return _int32_value_map[name];
}
std::vector<int32_t>&& get_int32_by_name_with_rv(const std::string& name) {
return std::move(_int32_value_map[name]);
}
const std::vector<int>& get_shape_by_name(const std::string& name) {
return _shape_map[name];
}
......@@ -103,6 +114,9 @@ class ModelRes {
_float_value_map.insert(
std::make_move_iterator(std::begin(res._float_value_map)),
std::make_move_iterator(std::end(res._float_value_map)));
_int32_value_map.insert(
std::make_move_iterator(std::begin(res._int32_value_map)),
std::make_move_iterator(std::end(res._int32_value_map)));
_shape_map.insert(std::make_move_iterator(std::begin(res._shape_map)),
std::make_move_iterator(std::end(res._shape_map)));
_lod_map.insert(std::make_move_iterator(std::begin(res._lod_map)),
......@@ -115,6 +129,7 @@ class ModelRes {
std::string _engine_name;
std::map<std::string, std::vector<int64_t>> _int64_value_map;
std::map<std::string, std::vector<float>> _float_value_map;
std::map<std::string, std::vector<int32_t>> _int32_value_map;
std::map<std::string, std::vector<int>> _shape_map;
std::map<std::string, std::vector<int>> _lod_map;
};
......@@ -145,6 +160,14 @@ class PredictorRes {
const std::string& name) {
return std::move(_models[model_idx].get_float_by_name_with_rv(name));
}
const std::vector<int32_t>& get_int32_by_name(const int model_idx,
const std::string& name) {
return _models[model_idx].get_int32_by_name(name);
}
std::vector<int32_t>&& get_int32_by_name_with_rv(const int model_idx,
const std::string& name) {
return std::move(_models[model_idx].get_int32_by_name_with_rv(name));
}
const std::vector<int>& get_shape_by_name(const int model_idx,
const std::string& name) {
return _models[model_idx].get_shape_by_name(name);
......
......@@ -207,17 +207,28 @@ int PredictorClient::batch_predict(
for (auto &name : int_feed_name) {
int idx = _feed_name_to_idx[name];
Tensor *tensor = tensor_vec[idx];
VLOG(2) << "prepare int feed " << name << " shape size "
<< int_shape[vec_idx].size();
if (_type[idx] == 0) {
VLOG(2) << "prepare int64 feed " << name << " shape size "
<< int_shape[vec_idx].size();
VLOG(3) << "feed var name " << name << " index " << vec_idx
<< "first data " << int_feed[vec_idx][0];
for (uint32_t j = 0; j < int_feed[vec_idx].size(); ++j) {
tensor->add_int64_data(int_feed[vec_idx][j]);
}
} else if (_type[idx] == 2) {
VLOG(2) << "prepare int32 feed " << name << " shape size "
<< int_shape[vec_idx].size();
VLOG(3) << "feed var name " << name << " index " << vec_idx
<< "first data " << int32_t(int_feed[vec_idx][0]);
for (uint32_t j = 0; j < int_feed[vec_idx].size(); ++j) {
tensor->add_int_data(int32_t(int_feed[vec_idx][j]));
}
}
for (uint32_t j = 0; j < int_shape[vec_idx].size(); ++j) {
tensor->add_shape(int_shape[vec_idx][j]);
}
tensor->set_elem_type(0);
VLOG(3) << "feed var name " << name << " index " << vec_idx
<< "first data " << int_feed[vec_idx][0];
for (uint32_t j = 0; j < int_feed[vec_idx].size(); ++j) {
tensor->add_int64_data(int_feed[vec_idx][j]);
}
tensor->set_elem_type(_type[idx]);
vec_idx++;
}
......@@ -284,18 +295,25 @@ int PredictorClient::batch_predict(
for (auto &name : fetch_name) {
// int idx = _fetch_name_to_idx[name];
if (_fetch_name_to_type[name] == 0) {
VLOG(2) << "ferch var " << name << "type int";
VLOG(2) << "ferch var " << name << "type int64";
int size = output.insts(0).tensor_array(idx).int64_data_size();
model._int64_value_map[name] = std::vector<int64_t>(
output.insts(0).tensor_array(idx).int64_data().begin(),
output.insts(0).tensor_array(idx).int64_data().begin() + size);
} else {
} else if (_fetch_name_to_type[name] == 1) {
VLOG(2) << "fetch var " << name << "type float";
int size = output.insts(0).tensor_array(idx).float_data_size();
model._float_value_map[name] = std::vector<float>(
output.insts(0).tensor_array(idx).float_data().begin(),
output.insts(0).tensor_array(idx).float_data().begin() + size);
} else if (_fetch_name_to_type[name] == 2) {
VLOG(2) << "fetch var " << name << "type int32";
int size = output.insts(0).tensor_array(idx).int_data_size();
model._int32_value_map[name] = std::vector<int32_t>(
output.insts(0).tensor_array(idx).int_data().begin(),
output.insts(0).tensor_array(idx).int_data().begin() + size);
}
idx += 1;
}
predict_res_batch.add_model_res(std::move(model));
......@@ -442,12 +460,19 @@ int PredictorClient::numpy_predict(
for (auto &name : int_feed_name) {
int idx = _feed_name_to_idx[name];
Tensor *tensor = tensor_vec[idx];
VLOG(2) << "prepare int feed " << name << " shape size "
<< int_shape[vec_idx].size();
for (uint32_t j = 0; j < int_shape[vec_idx].size(); ++j) {
tensor->add_shape(int_shape[vec_idx][j]);
}
tensor->set_elem_type(0);
tensor->set_elem_type(_type[idx]);
if (_type[idx] == 0) {
VLOG(2) << "prepare int feed " << name << " shape size "
<< int_shape[vec_idx].size();
} else {
VLOG(2) << "prepare int32 feed " << name << " shape size "
<< int_shape[vec_idx].size();
}
const int int_shape_size = int_shape[vec_idx].size();
switch (int_shape_size) {
......@@ -457,7 +482,11 @@ int PredictorClient::numpy_predict(
for (ssize_t j = 0; j < int_array.shape(1); j++) {
for (ssize_t k = 0; k < int_array.shape(2); k++) {
for (ssize_t l = 0; k < int_array.shape(3); l++) {
tensor->add_int64_data(int_array(i, j, k, l));
if (_type[idx] == 0) {
tensor->add_int64_data(int_array(i, j, k, l));
} else {
tensor->add_int_data(int_array(i, j, k, l));
}
}
}
}
......@@ -469,7 +498,11 @@ int PredictorClient::numpy_predict(
for (ssize_t i = 0; i < int_array.shape(0); i++) {
for (ssize_t j = 0; j < int_array.shape(1); j++) {
for (ssize_t k = 0; k < int_array.shape(2); k++) {
tensor->add_int64_data(int_array(i, j, k));
if (_type[idx] == 0) {
tensor->add_int64_data(int_array(i, j, k));
} else {
tensor->add_int_data(int_array(i, j, k));
}
}
}
}
......@@ -479,7 +512,11 @@ int PredictorClient::numpy_predict(
auto int_array = int_feed[vec_idx].unchecked<2>();
for (ssize_t i = 0; i < int_array.shape(0); i++) {
for (ssize_t j = 0; j < int_array.shape(1); j++) {
tensor->add_int64_data(int_array(i, j));
if (_type[idx] == 0) {
tensor->add_int64_data(int_array(i, j));
} else {
tensor->add_int_data(int_array(i, j));
}
}
}
break;
......@@ -487,7 +524,11 @@ int PredictorClient::numpy_predict(
case 1: {
auto int_array = int_feed[vec_idx].unchecked<1>();
for (ssize_t i = 0; i < int_array.shape(0); i++) {
tensor->add_int64_data(int_array(i));
if (_type[idx] == 0) {
tensor->add_int64_data(int_array(i));
} else {
tensor->add_int_data(int_array(i));
}
}
break;
}
......@@ -557,17 +598,23 @@ int PredictorClient::numpy_predict(
for (auto &name : fetch_name) {
// int idx = _fetch_name_to_idx[name];
if (_fetch_name_to_type[name] == 0) {
VLOG(2) << "ferch var " << name << "type int";
VLOG(2) << "ferch var " << name << "type int64";
int size = output.insts(0).tensor_array(idx).int64_data_size();
model._int64_value_map[name] = std::vector<int64_t>(
output.insts(0).tensor_array(idx).int64_data().begin(),
output.insts(0).tensor_array(idx).int64_data().begin() + size);
} else {
} else if (_fetch_name_to_type[name] == 1) {
VLOG(2) << "fetch var " << name << "type float";
int size = output.insts(0).tensor_array(idx).float_data_size();
model._float_value_map[name] = std::vector<float>(
output.insts(0).tensor_array(idx).float_data().begin(),
output.insts(0).tensor_array(idx).float_data().begin() + size);
} else if (_fetch_name_to_type[name] == 2) {
VLOG(2) << "fetch var " << name << "type int32";
int size = output.insts(0).tensor_array(idx).int_data_size();
model._int32_value_map[name] = std::vector<int32_t>(
output.insts(0).tensor_array(idx).int_data().begin(),
output.insts(0).tensor_array(idx).int_data().begin() + size);
}
idx += 1;
}
......@@ -601,7 +648,6 @@ int PredictorClient::numpy_predict(
_api.thrd_clear();
return 0;
}
} // namespace general_model
} // namespace paddle_serving
} // namespace baidu
......@@ -90,6 +90,9 @@ int GeneralDistKVInferOp::inference() {
keys.begin() + key_idx);
key_idx += dataptr_size_pairs[i].second;
}
Timer timeline;
int64_t cube_start = timeline.TimeStampUS();
timeline.Start();
rec::mcube::CubeAPI *cube = rec::mcube::CubeAPI::instance();
std::vector<std::string> table_names = cube->get_table_names();
if (table_names.size() == 0) {
......@@ -97,7 +100,7 @@ int GeneralDistKVInferOp::inference() {
return -1;
}
int ret = cube->seek(table_names[0], keys, &values);
int64_t cube_end = timeline.TimeStampUS();
if (values.size() != keys.size() || values[0].buff.size() == 0) {
LOG(ERROR) << "cube value return null";
}
......@@ -153,9 +156,7 @@ int GeneralDistKVInferOp::inference() {
VLOG(2) << "infer batch size: " << batch_size;
Timer timeline;
int64_t start = timeline.TimeStampUS();
timeline.Start();
if (InferManager::instance().infer(
engine_name().c_str(), &infer_in, out, batch_size)) {
......@@ -165,6 +166,8 @@ int GeneralDistKVInferOp::inference() {
int64_t end = timeline.TimeStampUS();
CopyBlobInfo(input_blob, output_blob);
AddBlobInfo(output_blob, cube_start);
AddBlobInfo(output_blob, cube_end);
AddBlobInfo(output_blob, start);
AddBlobInfo(output_blob, end);
return 0;
......
......@@ -126,9 +126,12 @@ int GeneralReaderOp::inference() {
if (elem_type[i] == 0) { // int64
elem_size[i] = sizeof(int64_t);
lod_tensor.dtype = paddle::PaddleDType::INT64;
} else {
} else if (elem_type[i] == 1) {
elem_size[i] = sizeof(float);
lod_tensor.dtype = paddle::PaddleDType::FLOAT32;
} else if (elem_type[i] == 2) {
elem_size[i] = sizeof(int32_t);
lod_tensor.dtype = paddle::PaddleDType::INT32;
}
if (model_config->_is_lod_feed[i]) {
......@@ -159,8 +162,10 @@ int GeneralReaderOp::inference() {
int data_len = 0;
if (tensor.int64_data_size() > 0) {
data_len = tensor.int64_data_size();
} else {
} else if (tensor.float_data_size() > 0) {
data_len = tensor.float_data_size();
} else if (tensor.int_data_size() > 0) {
data_len = tensor.int_data_size();
}
VLOG(2) << "tensor size for var[" << i << "]: " << data_len;
tensor_size += data_len;
......@@ -198,6 +203,8 @@ int GeneralReaderOp::inference() {
for (int i = 0; i < var_num; ++i) {
if (elem_type[i] == 0) {
int64_t *dst_ptr = static_cast<int64_t *>(out->at(i).data.data());
VLOG(2) << "first element data in var[" << i << "] is "
<< req->insts(0).tensor_array(i).int64_data(0);
int offset = 0;
for (int j = 0; j < batch_size; ++j) {
int elem_num = req->insts(j).tensor_array(i).int64_data_size();
......@@ -210,8 +217,10 @@ int GeneralReaderOp::inference() {
offset += capacity[i];
}
}
} else {
} else if (elem_type[i] == 1) {
float *dst_ptr = static_cast<float *>(out->at(i).data.data());
VLOG(2) << "first element data in var[" << i << "] is "
<< req->insts(0).tensor_array(i).float_data(0);
int offset = 0;
for (int j = 0; j < batch_size; ++j) {
int elem_num = req->insts(j).tensor_array(i).float_data_size();
......@@ -224,6 +233,22 @@ int GeneralReaderOp::inference() {
offset += capacity[i];
}
}
} else if (elem_type[i] == 2) {
int32_t *dst_ptr = static_cast<int32_t *>(out->at(i).data.data());
VLOG(2) << "first element data in var[" << i << "] is "
<< req->insts(0).tensor_array(i).int_data(0);
int offset = 0;
for (int j = 0; j < batch_size; ++j) {
int elem_num = req->insts(j).tensor_array(i).int_data_size();
for (int k = 0; k < elem_num; ++k) {
dst_ptr[offset + k] = req->insts(j).tensor_array(i).int_data(k);
}
if (out->at(i).lod.size() == 1) {
offset = out->at(i).lod[0][j + 1];
} else {
offset += capacity[i];
}
}
}
}
......
......@@ -114,49 +114,48 @@ int GeneralResponseOp::inference() {
for (int j = 0; j < in->at(idx).shape.size(); ++j) {
cap *= in->at(idx).shape[j];
}
if (in->at(idx).dtype == paddle::PaddleDType::INT64) {
FetchInst *fetch_p = output->mutable_insts(0);
auto dtype = in->at(idx).dtype;
if (dtype == paddle::PaddleDType::INT64) {
VLOG(2) << "Prepare int64 var [" << model_config->_fetch_name[idx]
<< "].";
int64_t *data_ptr = static_cast<int64_t *>(in->at(idx).data.data());
if (model_config->_is_lod_fetch[idx]) {
FetchInst *fetch_p = output->mutable_insts(0);
for (int j = 0; j < in->at(idx).lod[0].size(); ++j) {
fetch_p->mutable_tensor_array(var_idx)->add_lod(
in->at(idx).lod[0][j]);
}
for (int j = 0; j < cap; ++j) {
fetch_p->mutable_tensor_array(var_idx)->add_int64_data(data_ptr[j]);
}
} else {
FetchInst *fetch_p = output->mutable_insts(0);
for (int j = 0; j < cap; ++j) {
fetch_p->mutable_tensor_array(var_idx)->add_int64_data(data_ptr[j]);
}
}
VLOG(2) << "fetch var [" << model_config->_fetch_name[idx] << "] ready";
var_idx++;
} else if (in->at(idx).dtype == paddle::PaddleDType::FLOAT32) {
// from
// https://stackoverflow.com/questions/15499641/copy-a-stdvector-to-a-repeated-field-from-protobuf-with-memcpy
// `Swap` method is faster than `{}` method.
google::protobuf::RepeatedField<int64_t> tmp_data(data_ptr,
data_ptr + cap);
fetch_p->mutable_tensor_array(var_idx)->mutable_int64_data()->Swap(
&tmp_data);
} else if (dtype == paddle::PaddleDType::FLOAT32) {
VLOG(2) << "Prepare float var [" << model_config->_fetch_name[idx]
<< "].";
float *data_ptr = static_cast<float *>(in->at(idx).data.data());
if (model_config->_is_lod_fetch[idx]) {
FetchInst *fetch_p = output->mutable_insts(0);
for (int j = 0; j < in->at(idx).lod[0].size(); ++j) {
fetch_p->mutable_tensor_array(var_idx)->add_lod(
in->at(idx).lod[0][j]);
}
for (int j = 0; j < cap; ++j) {
fetch_p->mutable_tensor_array(var_idx)->add_float_data(data_ptr[j]);
}
} else {
FetchInst *fetch_p = output->mutable_insts(0);
for (int j = 0; j < cap; ++j) {
fetch_p->mutable_tensor_array(var_idx)->add_float_data(data_ptr[j]);
}
google::protobuf::RepeatedField<float> tmp_data(data_ptr,
data_ptr + cap);
fetch_p->mutable_tensor_array(var_idx)->mutable_float_data()->Swap(
&tmp_data);
} else if (dtype == paddle::PaddleDType::INT32) {
VLOG(2) << "Prepare int32 var [" << model_config->_fetch_name[idx]
<< "].";
int32_t *data_ptr = static_cast<int32_t *>(in->at(idx).data.data());
google::protobuf::RepeatedField<int32_t> tmp_data(data_ptr,
data_ptr + cap);
fetch_p->mutable_tensor_array(var_idx)->mutable_int_data()->Swap(
&tmp_data);
}
if (model_config->_is_lod_fetch[idx]) {
for (int j = 0; j < in->at(idx).lod[0].size(); ++j) {
fetch_p->mutable_tensor_array(var_idx)->add_lod(
in->at(idx).lod[0][j]);
}
VLOG(2) << "fetch var [" << model_config->_fetch_name[idx] << "] ready";
var_idx++;
}
VLOG(2) << "fetch var [" << model_config->_fetch_name[idx] << "] ready";
var_idx++;
}
}
......
......@@ -603,13 +603,13 @@ class VersionedInferEngine : public InferEngine {
LOG(ERROR) << "Failed generate engine with type:" << engine_type;
return -1;
}
VLOG(2) << "FLGS_logtostderr " << FLAGS_logtostderr;
VLOG(2) << "FLAGS_logtostderr " << FLAGS_logtostderr;
int tmp = FLAGS_logtostderr;
if (engine->proc_initialize(conf, version) != 0) {
LOG(ERROR) << "Failed initialize engine, type:" << engine_type;
return -1;
}
VLOG(2) << "FLGS_logtostderr " << FLAGS_logtostderr;
VLOG(2) << "FLAGS_logtostderr " << FLAGS_logtostderr;
FLAGS_logtostderr = tmp;
auto r = _versions.insert(std::make_pair(engine->version(), engine));
if (!r.second) {
......
......@@ -17,11 +17,11 @@
#include <fstream>
#include <iostream>
#include <memory>
#include <thread>
#include <thread> //NOLINT
#include "core/predictor/framework.pb.h"
#include "quant.h"
#include "seq_file.h"
#include "quant.h" // NOLINT
#include "seq_file.h" // NOLINT
inline uint64_t time_diff(const struct timeval &start_time,
const struct timeval &end_time) {
......@@ -113,13 +113,15 @@ int dump_parameter(const char *input_file, const char *output_file) {
// std::cout << "key_len " << key_len << " value_len " << value_buf_len
// << std::endl;
memcpy(value_buf, tensor_buf + offset, value_buf_len);
seq_file_writer.write((char *)&i, sizeof(i), value_buf, value_buf_len);
seq_file_writer.write(
static_cast<int>(&i), sizeof(i), value_buf, value_buf_len);
offset += value_buf_len;
}
return 0;
}
float *read_embedding_table(const char *file1, std::vector<int64_t> &dims) {
float *read_embedding_table(const char *file1,
std::vector<int64_t> &dims) { // NOLINT
std::ifstream is(file1);
// Step 1: is read version, os write version
uint32_t version;
......@@ -233,7 +235,7 @@ int compress_parameter_parallel(const char *file1,
greedy_search(
emb_table + k * emb_size, xmin, xmax, loss, emb_size, bits);
// 得出 loss 最小的时候的 scale
float scale = (xmax - xmin) * (pow2bits - 1);
float scale = (xmax - xmin) / (pow2bits - 1);
char *min_ptr = tensor_temp;
char *max_ptr = tensor_temp + sizeof(float);
memcpy(min_ptr, &xmin, sizeof(float));
......@@ -242,7 +244,7 @@ int compress_parameter_parallel(const char *file1,
float x = *(emb_table + k * emb_size + e);
int val = round((x - xmin) / scale);
val = std::max(0, val);
val = std::min((int)pow2bits - 1, val);
val = std::min(static_cast<int>(pow2bits) - 1, val);
*(tensor_temp + 2 * sizeof(float) + e) = val;
}
result[k] = tensor_temp;
......@@ -262,7 +264,8 @@ int compress_parameter_parallel(const char *file1,
}
SeqFileWriter seq_file_writer(file2);
for (int64_t i = 0; i < dict_size; i++) {
seq_file_writer.write((char *)&i, sizeof(i), result[i], per_line_size);
seq_file_writer.write(
static_cast<char *>(&i), sizeof(i), result[i], per_line_size);
}
return 0;
}
......
......@@ -11,10 +11,7 @@
- CMake:3.2.2 and later
- Python:2.7.2 and later / 3.6 and later
It is recommended to use Docker for compilation. We have prepared the Paddle Serving compilation environment for you:
- CPU: `hub.baidubce.com/paddlepaddle/serving:latest-devel`,dockerfile: [Dockerfile.devel](../tools/Dockerfile.devel)
- GPU: `hub.baidubce.com/paddlepaddle/serving:latest-gpu-devel`,dockerfile: [Dockerfile.gpu.devel](../tools/Dockerfile.gpu.devel)
It is recommended to use Docker for compilation. We have prepared the Paddle Serving compilation environment for you, see [this document](DOCKER_IMAGES.md).
This document will take Python2 as an example to show how to compile Paddle Serving. If you want to compile with Python3, just adjust the Python options of cmake:
......@@ -29,6 +26,9 @@ git clone https://github.com/PaddlePaddle/Serving
cd Serving && git submodule update --init --recursive
```
## PYTHONROOT Setting
```shell
......@@ -38,6 +38,18 @@ export PYTHONROOT=/usr/
In the default centos7 image we provide, the Python path is `/usr/bin/python`. If you want to use our centos6 image, you need to set it to `export PYTHONROOT=/usr/local/python2.7/`.
## Install Python dependencies
```shell
pip install -r python/requirements.txt
```
If Python3 is used, replace `pip` with `pip3`.
## Compile Server
### Integrated CPU version paddle inference library
......@@ -62,6 +74,8 @@ execute `make install` to put targets under directory `./output`
**Attention:** After the compilation is successful, you need to set the path of `SERVING_BIN`. See [Note](https://github.com/PaddlePaddle/Serving/blob/develop/doc/COMPILE.md#Note) for details.
## Compile Client
``` shell
......@@ -72,6 +86,8 @@ make -j10
execute `make install` to put targets under directory `./output`
## Compile the App
```bash
......@@ -80,15 +96,20 @@ cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PY
make
```
## Install wheel package
Regardless of the client, server or App part, after compiling, install the whl package under `python/dist/`.
## Note
When running the python server, it will check the `SERVING_BIN` environment variable. If you want to use your own compiled binary file, set the environment variable to the path of the corresponding binary file, usually`export SERVING_BIN=${BUILD_DIR}/core/general-server/serving`.
## CMake Option Description
| Compile Options | Description | Default |
......
......@@ -11,10 +11,7 @@
- CMake:3.2.2及以上
- Python:2.7.2及以上 / 3.6及以上
推荐使用Docker编译,我们已经为您准备好了Paddle Serving编译环境:
- CPU: `hub.baidubce.com/paddlepaddle/serving:latest-devel`,dockerfile: [Dockerfile.devel](../tools/Dockerfile.devel)
- GPU: `hub.baidubce.com/paddlepaddle/serving:latest-gpu-devel`,dockerfile: [Dockerfile.gpu.devel](../tools/Dockerfile.gpu.devel)
推荐使用Docker编译,我们已经为您准备好了Paddle Serving编译环境,详见[该文档](DOCKER_IMAGES_CN.md)
本文档将以Python2为例介绍如何编译Paddle Serving。如果您想用Python3进行编译,只需要调整cmake的Python相关选项即可:
......@@ -29,6 +26,9 @@ git clone https://github.com/PaddlePaddle/Serving
cd Serving && git submodule update --init --recursive
```
## PYTHONROOT设置
```shell
......@@ -38,6 +38,18 @@ export PYTHONROOT=/usr/
我们提供默认Centos7的Python路径为`/usr/bin/python`,如果您要使用我们的Centos6镜像,需要将其设置为`export PYTHONROOT=/usr/local/python2.7/`
## 安装Python依赖
```shell
pip install -r python/requirements.txt
```
如果使用 Python3,请以 `pip3` 替换 `pip`
## 编译Server部分
### 集成CPU版本Paddle Inference Library
......@@ -62,6 +74,8 @@ make -j10
**注意:** 编译成功后,需要设置`SERVING_BIN`路径,详见后面的[注意事项](https://github.com/PaddlePaddle/Serving/blob/develop/doc/COMPILE_CN.md#注意事项)
## 编译Client部分
``` shell
......@@ -72,6 +86,8 @@ make -j10
执行`make install`可以把目标产出放在`./output`目录下。
## 编译App部分
```bash
......@@ -80,14 +96,20 @@ cmake -DPYTHON_INCLUDE_DIR=$PYTHONROOT/include/python2.7/ -DPYTHON_LIBRARIES=$PY
make
```
## 安装wheel包
无论是Client端,Server端还是App部分,编译完成后,安装`python/dist/`下的whl包即可。
## 注意事项
运行python端Server时,会检查`SERVING_BIN`环境变量,如果想使用自己编译的二进制文件,请将设置该环境变量为对应二进制文件的路径,通常是`export SERVING_BIN=${BUILD_DIR}/core/general-server/serving`
## CMake选项说明
| 编译选项 | 说明 | 默认 |
......
......@@ -42,7 +42,7 @@ cd python/examples/criteo_ctr_with_cube
python local_train.py
cp ../../../build_server/core/predictor/seq_generator seq_generator
cp ../../../build_server/output/bin/cube* ./cube/
sh cube_prepare_quant.sh &
sh cube_quant_prepare.sh &
python test_server_quant.py ctr_serving_model_kv &
python test_client.py ctr_client_conf/serving_client_conf.prototxt ./raw_data
```
......
......@@ -42,7 +42,7 @@ cd python/examples/criteo_ctr_with_cube
python local_train.py
cp ../../../build_server/core/predictor/seq_generator seq_generator
cp ../../../build_server/output/bin/cube* ./cube/
sh cube_prepare_quant.sh &
sh cube_quant_prepare.sh &
python test_server_quant.py ctr_serving_model_kv &
python test_client.py ctr_client_conf/serving_client_conf.prototxt ./raw_data
```
......
# Docker Images
([简体中文](DOCKER_IMAGES_CN.md)|English)
This document maintains a list of docker images provided by Paddle Serving.
## Get docker image
You can get images in two ways:
1. Pull image directly from `hub.baidubce.com ` or `docker.io` through TAG:
```shell
docker pull hub.baidubce.com/paddlepaddle/serving:<TAG> # hub.baidubce.com
docker pull paddlepaddle/serving:<TAG> # hub.docker.com
```
2. Building image based on dockerfile
Create a new folder and copy Dockerfile to this folder, and run the following command:
```shell
docker build -t <image-name>:<images-tag> .
```
## Image description
Runtime images cannot be used for compilation.
| Description | OS | TAG | Dockerfile |
| :----------------------------------------------------------: | :-----: | :--------------------------: | :----------------------------------------------------------: |
| CPU runtime | CentOS7 | latest | [Dockerfile](../tools/Dockerfile) |
| CPU development | CentOS7 | latest-devel | [Dockerfile.devel](../tools/Dockerfile.devel) |
| GPU (cuda9.0-cudnn7) runtime | CentOS7 | latest-cuda9.0-cudnn7 | [Dockerfile.cuda9.0-cudnn7](../tools/Dockerfile.cuda9.0-cudnn7) |
| GPU (cuda9.0-cudnn7) development | CentOS7 | latest-cuda9.0-cudnn7-devel | [Dockerfile.cuda9.0-cudnn7.devel](../tools/Dockerfile.cuda9.0-cudnn7.devel) |
| GPU (cuda10.0-cudnn7) runtime | CentOS7 | latest-cuda10.0-cudnn7 | [Dockerfile.cuda10.0-cudnn7](../tools/Dockerfile.cuda10.0-cudnn7) |
| GPU (cuda10.0-cudnn7) development | CentOS7 | latest-cuda10.0-cudnn7-devel | [Dockerfile.cuda10.0-cudnn7.devel](../tools/Dockerfile.cuda10.0-cudnn7.devel) |
| CPU development (Used to compile packages on Ubuntu) | CentOS6 | <None> | [Dockerfile.centos6.devel](../tools/Dockerfile.centos6.devel) |
| GPU (cuda9.0-cudnn7) development (Used to compile packages on Ubuntu) | CentOS6 | <None> | [Dockerfile.centos6.cuda9.0-cudnn7.devel](../tools/Dockerfile.centos6.cuda9.0-cudnn7.devel) |
# Docker 镜像
(简体中文|[English](DOCKER_IMAGES.md))
该文档维护了 Paddle Serving 提供的镜像列表。
## 获取镜像
您可以通过两种方式获取镜像。
1. 通过 TAG 直接从 `hub.baidubce.com ``docker.io` 拉取镜像:
```shell
docker pull hub.baidubce.com/paddlepaddle/serving:<TAG> # hub.baidubce.com
docker pull paddlepaddle/serving:<TAG> # hub.docker.com
```
2. 基于 Dockerfile 构建镜像
建立新目录,复制对应 Dockerfile 内容到该目录下 Dockerfile 文件。执行
```shell
docker build -t <image-name>:<images-tag> .
```
## 镜像说明
运行时镜像不能用于开发编译。
| 镜像说明 | 操作系统 | TAG | Dockerfile |
| -------------------------------------------------- | -------- | ---------------------------- | ------------------------------------------------------------ |
| CPU 运行镜像 | CentOS7 | latest | [Dockerfile](../tools/Dockerfile) |
| CPU 开发镜像 | CentOS7 | latest-devel | [Dockerfile.devel](../tools/Dockerfile.devel) |
| GPU (cuda9.0-cudnn7) 运行镜像 | CentOS7 | latest-cuda9.0-cudnn7 | [Dockerfile.cuda9.0-cudnn7](../tools/Dockerfile.cuda9.0-cudnn7) |
| GPU (cuda9.0-cudnn7) 开发镜像 | CentOS7 | latest-cuda9.0-cudnn7-devel | [Dockerfile.cuda9.0-cudnn7.devel](../tools/Dockerfile.cuda9.0-cudnn7.devel) |
| GPU (cuda10.0-cudnn7) 运行镜像 | CentOS7 | latest-cuda10.0-cudnn7 | [Dockerfile.cuda10.0-cudnn7](../tools/Dockerfile.cuda10.0-cudnn7) |
| GPU (cuda10.0-cudnn7) 开发镜像 | CentOS7 | latest-cuda10.0-cudnn7-devel | [Dockerfile.cuda10.0-cudnn7.devel](../tools/Dockerfile.cuda10.0-cudnn7.devel) |
| CPU 开发镜像 (用于编译 Ubuntu 包) | CentOS6 | <无> | [Dockerfile.centos6.devel](../tools/Dockerfile.centos6.devel) |
| GPU (cuda9.0-cudnn7) 开发镜像 (用于编译 Ubuntu 包) | CentOS6 | <无> | [Dockerfile.centos6.cuda9.0-cudnn7.devel](../tools/Dockerfile.centos6.cuda9.0-cudnn7.devel) |
# gRPC接口
gRPC 接口实现形式类似 Web Service:
![](grpc_impl.png)
## 与bRPC接口对比
1. gRPC Server 端 `load_model_config` 函数添加 `client_config_path` 参数:
```python
def load_model_config(self, server_config_paths, client_config_path=None)
```
在一些例子中 bRPC Server 端与 bRPC Client 端的配置文件可能是不同的(如 cube local 例子中,Client 端的数据先交给 cube,经过 cube 处理后再交给预测库),所以 gRPC Server 端需要获取 gRPC Client 端的配置;同时为了取消 gRPC Client 端手动加载配置文件的过程,所以设计 gRPC Server 端同时加载两个配置文件。`client_config_path` 默认为 `<server_config_path>/serving_server_conf.prototxt`
2. gRPC Client 端取消 `load_client_config` 步骤:
`connect` 步骤通过 RPC 获取相应的 prototxt(从任意一个 endpoint 获取即可)。
3. gRPC Client 需要通过 RPC 方式设置 timeout 时间(调用形式与 bRPC Client保持一致)
因为 bRPC Client 在 `connect` 后无法更改 timeout 时间,所以当 gRPC Server 收到变更 timeout 的调用请求时会重新创建 bRPC Client 实例以变更 bRPC Client timeout时间,同时 gRPC Client 会设置 gRPC 的 deadline 时间。
**注意,设置 timeout 接口和 Inference 接口不能同时调用(非线程安全),出于性能考虑暂时不加锁。**
4. gRPC Client 端 `predict` 函数添加 `asyn``is_python` 参数:
```python
def predict(self, feed, fetch, need_variant_tag=False, asyn=False, is_python=True)
```
其中,`asyn` 为异步调用选项。当 `asyn=True` 时为异步调用,返回 `MultiLangPredictFuture` 对象,通过 `MultiLangPredictFuture.result()` 阻塞获取预测值;当 `asyn=Fasle` 为同步调用。
`is_python` 为 proto 格式选项。当 `is_python=True` 时,基于 numpy bytes 格式进行数据传输,目前只适用于 Python;当 `is_python=False` 时,以普通数据格式传输,更加通用。使用 numpy bytes 格式传输耗时比普通数据格式小很多(详见 [#654](https://github.com/PaddlePaddle/Serving/pull/654))。
5. 异常处理:当 gRPC Server 端的 bRPC Client 预测失败(返回 `None`)时,gRPC Client 端同样返回None。其他 gRPC 异常会在 Client 内部捕获,并在返回的 fetch_map 中添加一个 "status_code" 字段来区分是否预测正常(参考 timeout 样例)。
6. 由于 gRPC 只支持 pick_first 和 round_robin 负载均衡策略,ABTEST 特性还未打齐。
7. 经测试,gRPC 版本可以在 Windows、macOS 平台使用。
8. 计划支持的客户端语言:
- [x] Python
- [ ] Java
- [ ] Go
- [ ] JavaScript
## Python 端的一些例子
详见 `python/examples/grpc_impl_example` 下的示例文件。
# Paddle Serving Client Java SDK
([简体中文](JAVA_SDK_CN.md)|English)
Paddle Serving provides Java SDK,which supports predict on the Client side with Java language. This document shows how to use the Java SDK.
## Getting started
### Prerequisites
```
- Java 8 or higher
- Apache Maven
```
The following table shows compatibilities between Paddle Serving Server and Java SDK.
| Paddle Serving Server version | Java SDK version |
| :---------------------------: | :--------------: |
| 0.3.2 | 0.0.1 |
### Install Java SDK
You can download jar and install it to the local Maven repository:
```shell
wget https://paddle-serving.bj.bcebos.com/jar/paddle-serving-sdk-java-0.0.1.jar
mvn install:install-file -Dfile=$PWD/paddle-serving-sdk-java-0.0.1.jar -DgroupId=io.paddle.serving.client -DartifactId=paddle-serving-sdk-java -Dversion=0.0.1 -Dpackaging=jar
```
Or compile from the source code and install it to the local Maven repository:
```shell
cd Serving/java
mvn compile
mvn install
```
### Maven configure
```text
<dependency>
<groupId>io.paddle.serving.client</groupId>
<artifactId>paddle-serving-sdk-java</artifactId>
<version>0.0.1</version>
</dependency>
```
## Example
Here we will show how to use Java SDK for Boston house price prediction. Please refer to [examples](../java/examples) folder for more examples.
### Get model
```shell
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz
tar -xzf uci_housing.tar.gz
```
### Start Python Server
```shell
python -m paddle_serving_server.serve --model uci_housing_model --port 9393 --use_multilang
```
#### Client side code example
```java
import io.paddle.serving.client.*;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import java.util.*;
public class PaddleServingClientExample {
public static void main( String[] args ) {
float[] data = {0.0137f, -0.1136f, 0.2553f, -0.0692f,
0.0582f, -0.0727f, -0.1583f, -0.0584f,
0.6283f, 0.4919f, 0.1856f, 0.0795f, -0.0332f};
INDArray npdata = Nd4j.createFromArray(data);
HashMap<String, INDArray> feed_data
= new HashMap<String, INDArray>() {{
put("x", npdata);
}};
List<String> fetch = Arrays.asList("price");
Client client = new Client();
String target = "localhost:9393";
boolean succ = client.connect(target);
if (succ != true) {
System.out.println("connect failed.");
return ;
}
Map<String, INDArray> fetch_map = client.predict(feed_data, fetch);
if (fetch_map == null) {
System.out.println("predict failed.");
return ;
}
for (Map.Entry<String, INDArray> e : fetch_map.entrySet()) {
System.out.println("Key = " + e.getKey() + ", Value = " + e.getValue());
}
return ;
}
}
```
# Paddle Serving Client Java SDK
(简体中文|[English](JAVA_SDK.md))
Paddle Serving 提供了 Java SDK,支持 Client 端用 Java 语言进行预测,本文档说明了如何使用 Java SDK。
## 快速开始
### 环境要求
```
- Java 8 or higher
- Apache Maven
```
下表显示了 Paddle Serving Server 和 Java SDK 之间的兼容性
| Paddle Serving Server version | Java SDK version |
| :---------------------------: | :--------------: |
| 0.3.2 | 0.0.1 |
### 安装
您可以直接下载 jar,安装到本地 Maven 库:
```shell
wget https://paddle-serving.bj.bcebos.com/jar/paddle-serving-sdk-java-0.0.1.jar
mvn install:install-file -Dfile=$PWD/paddle-serving-sdk-java-0.0.1.jar -DgroupId=io.paddle.serving.client -DartifactId=paddle-serving-sdk-java -Dversion=0.0.1 -Dpackaging=jar
```
或者从源码进行编译,安装到本地 Maven 库:
```shell
cd Serving/java
mvn compile
mvn install
```
### Maven 配置
```text
<dependency>
<groupId>io.paddle.serving.client</groupId>
<artifactId>paddle-serving-sdk-java</artifactId>
<version>0.0.1</version>
</dependency>
```
## 使用样例
这里将展示如何使用 Java SDK 进行房价预测,更多例子详见 [examples](../java/examples) 文件夹。
### 获取房价预测模型
```shell
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz
tar -xzf uci_housing.tar.gz
```
### 启动 Python 端 Server
```shell
python -m paddle_serving_server.serve --model uci_housing_model --port 9393 --use_multilang
```
### Client 端代码示例
```java
import io.paddle.serving.client.*;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import java.util.*;
public class PaddleServingClientExample {
public static void main( String[] args ) {
float[] data = {0.0137f, -0.1136f, 0.2553f, -0.0692f,
0.0582f, -0.0727f, -0.1583f, -0.0584f,
0.6283f, 0.4919f, 0.1856f, 0.0795f, -0.0332f};
INDArray npdata = Nd4j.createFromArray(data);
HashMap<String, INDArray> feed_data
= new HashMap<String, INDArray>() {{
put("x", npdata);
}};
List<String> fetch = Arrays.asList("price");
Client client = new Client();
String target = "localhost:9393";
boolean succ = client.connect(target);
if (succ != true) {
System.out.println("connect failed.");
return ;
}
Map<String, INDArray> fetch_map = client.predict(feed_data, fetch);
if (fetch_map == null) {
System.out.println("predict failed.");
return ;
}
for (Map.Entry<String, INDArray> e : fetch_map.entrySet()) {
System.out.println("Key = " + e.getKey() + ", Value = " + e.getValue());
}
return ;
}
}
```
......@@ -2,7 +2,7 @@
([简体中文](NEW_WEB_SERVICE_CN.md)|English)
This document will take the image classification service based on the Imagenet data set as an example to introduce how to develop a new web service. The complete code can be visited at [here](https://github.com/PaddlePaddle/Serving/blob/develop/python/examples/imagenet/image_classification_service.py).
This document will take the image classification service based on the Imagenet data set as an example to introduce how to develop a new web service. The complete code can be visited at [here](../python/examples/imagenet/resnet50_web_service.py).
## WebService base class
......
......@@ -2,7 +2,7 @@
(简体中文|[English](NEW_WEB_SERVICE.md))
本文档将以Imagenet图像分类服务为例,来介绍如何开发一个新的Web Service。您可以在[这里](https://github.com/PaddlePaddle/Serving/blob/develop/python/examples/imagenet/image_classification_service.py)查阅完整的代码。
本文档将以Imagenet图像分类服务为例,来介绍如何开发一个新的Web Service。您可以在[这里](../python/examples/imagenet/resnet50_web_service.py)查阅完整的代码。
## WebService基类
......
# Pipeline Serving
([简体中文](PIPELINE_SERVING_CN.md)|English)
Paddle Serving is usually used for the deployment of single model, but the end-to-end deep learning model can not solve all the problems at present. Usually, it is necessary to use multiple deep learning models to solve practical problems.
Paddle Serving provides a user-friendly programming framework for multi-model composite services, Pipeline Serving, which aims to reduce the threshold of programming, improve resource utilization (especially GPU), and improve the prediction efficiency.
## Architecture Design
The Server side is built based on gRPC and graph execution engine. The relationship between them is shown in the following figure.
<center>
<img src='pipeline_serving-image1.png' height = "250" align="middle"/>
</center>
### Graph Execution Engine
The graph execution engine consists of OPs and Channels, and the connected OPs share one Channel.
- Channel can be understood as a buffer queue. Each OP accepts only one Channel input and multiply Channel outputs (each output is the same); a Channel can contain outputs from multiple OPs, and data from the same Channel can be used as input for multiple OPs.
- Users only need to define relationships between OPs. Graph engine will analyze the dependencies of the entire graph and declaring Channels at the compile time.
- After Request data enters the graph execution engine service, the graph engine will generator an Request ID, and Reponse is returned through corresponding Request ID.
- For cases where large data needs to be transferred between OPs, consider RAM DB external memory for global storage and data transfer by passing index keys in Channel.
<center>
<img src='pipeline_serving-image2.png' height = "300" align="middle"/>
</center>
### OP Design
- The default function of a single OP is to access a single Paddle Serving Service based on the input Channel data and put the result into the output Channel.
- OP supports user customization, including preprocess, process, postprocess functions that can be inherited and implemented by the user.
- OP can set the number of concurrencies to increase the number of concurrencies processed.
- OP can be started by a thread or process.
### Channel Design
- Channel is the data structure for sharing data between OPs, responsible for sharing data or sharing data status information.
- Outputs from multiple OPs can be stored in the same Channel, and data from the same Channel can be used by multiple OPs.
- The following illustration shows the design of Channel in the graph execution engine, using input buffer and output buffer to align data between multiple OP inputs and multiple OP outputs, with a queue in the middle to buffer.
<center>
<img src='pipeline_serving-image3.png' height = "500" align="middle"/>
</center>
### Extreme Case Consideration
- Request timeout
The entire graph execution engine may time out at every step. The graph execution engine controls the time out by setting `timeout` value. Requests that time out at any step will return a timeout response.
- Channel stores too much data
Channels may store too much data, causing copy time to be too high. Graph execution engines can store OP calculation results in external memory, such as high-speed memory KV systems.
- Whether input buffers and output buffers in Channel will increase indefinitely
- It will not increase indefinitely. The input to the entire graph execution engine is placed inside a Channel's internal queue, directly acting as a traffic control buffer queue for the entire service.
- For input buffer, adjust the number of concurrencies of OP1 and OP2 according to the amount of computation, so that the number of input buffers from each input OP is relatively balanced.
- For output buffer, you can use a similar process as input buffer, which adjusts the concurrency of OP3 and OP4 to control the buffer length of output buffer.
- Note: The length of the input buffer depends on the speed at which each item in the internal queue is ready, and the length of the output buffer depends on the speed at which downstream OPs obtain data from the output buffer.
## Detailed Design
### User Interface Design
#### 1. General OP Definition
As the basic unit of graph execution engine, the general OP constructor is as follows:
```python
def __init__(name=None,
input_ops=[],
server_endpoints=[],
fetch_list=[],
client_config=None,
concurrency=1,
timeout=-1,
retry=1)
```
The meaning of each parameter is as follows:
| Parameter | Meaning |
| :--------------: | :----------------------------------------------------------: |
| name | (str) String used to identify the OP type, which must be globally unique. |
| input_ops | (list) A list of all previous OPs of the current Op. |
| server_endpoints | (list) List of endpoints for remote Paddle Serving Service. If this parameter is not set, the OP will not access the remote Paddle Serving Service, that is, the process operation will not be performed. |
| fetch_list | (list) List of fetch variable names for remote Paddle Serving Service. |
| client_config | (str) The path of the client configuration file corresponding to the Paddle Serving Service. |
| concurrency | (int) The number of concurrent OPs. |
| timeout | (int) The timeout time of the process operation, in seconds. If the value is less than zero, no timeout is considered. |
| retry | (int) Timeout number of retries. When the value is 1, no retries are made. |
#### 2. General OP Secondary Development Interface
| Interface or Variable | Explain |
| :--------------------------------------------: | :----------------------------------------------------------: |
| def preprocess(self, input_dicts) | Process the data obtained from the channel, and the processed data will be used as the input of the **process** function. |
| def process(self, feed_dict) | The RPC prediction process is based on the Paddle Serving Client, and the processed data will be used as the input of the **postprocess** function. |
| def postprocess(self, input_dicts, fetch_dict) | After processing the prediction results, the processed data will be put into the subsequent Channel to be obtained by the subsequent OP. |
| def init_op(self) | Used to load resources (such as word dictionary). |
| self.concurrency_idx | Concurrency index of current thread / process (different kinds of OP are calculated separately). |
In a running cycle, OP will execute three operations: preprocess, process, and postprocess (when the `server_endpoints` parameter is not set, the process operation is not executed). Users can rewrite these three functions. The default implementation is as follows:
```python
def preprocess(self, input_dicts):
# multiple previous Op
if len(input_dicts) != 1:
raise NotImplementedError(
'this Op has multiple previous inputs. Please override this func.'
(_, input_dict), = input_dicts.items()
return input_dict
def process(self, feed_dict):
err, err_info = ChannelData.check_npdata(feed_dict)
if err != 0:
raise NotImplementedError(
"{} Please override preprocess func.".format(err_info))
call_result = self.client.predict(
feed=feed_dict, fetch=self._fetch_names)
return call_result
def postprocess(self, input_dicts, fetch_dict):
return fetch_dict
```
The parameter of **preprocess** is the data `input_dicts` in the previous Channel. This variable is a dictionary with the name of the previous OP as key and the output of the corresponding OP as value.
The parameter of **process** is the input variable `fetch_dict` (the return value of the preprocess function) of the Paddle Serving Client prediction interface. This variable is a dictionary with feed_name as the key and the data in the ndarray format as the value.
The parameters of **postprocess** are `input_dicts` and `fetch_dict`. `input_dicts` is consistent with the parameter of preprocess, and `fetch_dict` is the return value of the process function (if process is not executed, this value is the return value of preprocess).
Users can also rewrite the **init_op** function to load some custom resources (such as word dictionary). The default implementation is as follows:
```python
def init_op(self):
pass
```
It should be noted that in the threaded version of OP, each OP will only call this function once, so the loaded resources must be thread safe.
#### 3. RequestOp Definition
RequestOp is used to process RPC data received by Pipeline Server, and the processed data will be added to the graph execution engine. Its constructor is as follows:
```python
def __init__(self)
```
#### 4. RequestOp Secondary Development Interface
| Interface or Variable | Explain |
| :---------------------------------------: | :----------------------------------------------------------: |
| def init_op(self) | It is used to load resources (such as dictionaries), and is consistent with general OP. |
| def unpack_request_package(self, request) | Process received RPC data. |
The default implementation of **unpack_request_package** is to make the key and value in RPC request into a dictionary:
```python
def unpack_request_package(self, request):
dictdata = {}
for idx, key in enumerate(request.key):
data = request.value[idx]
try:
data = eval(data)
except Exception as e:
pass
dictdata[key] = data
return dictdata
```
The return value is required to be a dictionary type.
#### 5. ResponseOp Definition
ResponseOp is used to process the prediction results of the graph execution engine. The processed data will be used as the RPC return value of Pipeline Server. Its constructor is as follows:
```python
def __init__(self, input_ops)
```
`input_ops` is the last OP of graph execution engine. Users can construct different DAGs by setting different `input_ops` without modifying the topology of OPs.
#### 6. ResponseOp Secondary Development Interface
| Interface or Variable | Explain |
| :------------------------------------------: | :----------------------------------------------------------: |
| def init_op(self) | It is used to load resources (such as dictionaries), and is consistent with general OP. |
| def pack_response_package(self, channeldata) | Process the prediction results of the graph execution engine as the return of RPC. |
The default implementation of **pack_response_package** is to convert the dictionary of prediction results into key and value in RPC response:
```python
def pack_response_package(self, channeldata):
resp = pipeline_service_pb2.Response()
resp.ecode = channeldata.ecode
if resp.ecode == ChannelDataEcode.OK.value:
if channeldata.datatype == ChannelDataType.CHANNEL_NPDATA.value:
feed = channeldata.parse()
np.set_printoptions(threshold=np.nan)
for name, var in feed.items():
resp.value.append(var.__repr__())
resp.key.append(name)
elif channeldata.datatype == ChannelDataType.DICT.value:
feed = channeldata.parse()
for name, var in feed.items():
if not isinstance(var, str):
resp.ecode = ChannelDataEcode.TYPE_ERROR.value
resp.error_info = self._log(
"fetch var type must be str({}).".format(type(var)))
break
resp.value.append(var)
resp.key.append(name)
else:
resp.ecode = ChannelDataEcode.TYPE_ERROR.value
resp.error_info = self._log(
"Error type({}) in datatype.".format(channeldata.datatype))
else:
resp.error_info = channeldata.error_info
return resp
```
#### 7. PipelineServer Definition
The definition of PipelineServer is relatively simple, as follows:
```python
server = PipelineServer()
server.set_response_op(response_op)
server.prepare_server(config_yml_path)
server.run_server()
```
Where `response_op` is the responseop mentioned above, PipelineServer will initialize Channels according to the topology relationship of each OP and build the calculation graph. `config_yml_path` is the configuration file of PipelineServer. The example file is as follows:
```yaml
port: 18080 # gRPC port
worker_num: 1 # gRPC thread pool size (the number of processes in the process version servicer). The default is 1
build_dag_each_worker: false # Whether to use process server or not. The default is false
dag:
is_thread_op: true # Whether to use the thread version of OP. The default is true
client_type: brpc # Use brpc or grpc client. The default is brpc
retry: 1 # The number of times DAG executor retries after failure. The default value is 1, that is, no retrying
use_profile: false # Whether to print the log on the server side. The default is false
```
## Example
Here, we build a simple imdb model enable example to show how to use Pipeline Serving. The relevant code can be found in the `python/examples/pipeline/imdb_model_ensemble` folder. The Server-side structure in the example is shown in the following figure:
<center>
<img src='pipeline_serving-image4.png' height = "200" align="middle"/>
</center>
### Get the model file and start the Paddle Serving Service
```shell
cd python/examples/pipeline/imdb_model_ensemble
sh get_data.sh
python -m paddle_serving_server.serve --model imdb_cnn_model --port 9292 &> cnn.log &
python -m paddle_serving_server.serve --model imdb_bow_model --port 9393 &> bow.log &
```
### Start PipelineServer
Run the following code
```python
from paddle_serving_server.pipeline import Op, RequestOp, ResponseOp
from paddle_serving_server.pipeline import PipelineServer
from paddle_serving_server.pipeline.proto import pipeline_service_pb2
from paddle_serving_server.pipeline.channel import ChannelDataEcode
import numpy as np
import logging
from paddle_serving_app.reader import IMDBDataset
logging.basicConfig(level=logging.DEBUG)
_LOGGER = logging.getLogger()
class ImdbRequestOp(RequestOp):
def init_op(self):
self.imdb_dataset = IMDBDataset()
self.imdb_dataset.load_resource('imdb.vocab')
def unpack_request_package(self, request):
dictdata = {}
for idx, key in enumerate(request.key):
if key != "words":
continue
words = request.value[idx]
word_ids, _ = self.imdb_dataset.get_words_and_label(words)
dictdata[key] = np.array(word_ids)
return dictdata
class CombineOp(Op):
def preprocess(self, input_data):
combined_prediction = 0
for op_name, data in input_data.items():
_LOGGER.info("{}: {}".format(op_name, data["prediction"]))
combined_prediction += data["prediction"]
data = {"prediction": combined_prediction / 2}
return data
read_op = ImdbRequestOp()
bow_op = Op(name="bow",
input_ops=[read_op],
server_endpoints=["127.0.0.1:9393"],
fetch_list=["prediction"],
client_config="imdb_bow_client_conf/serving_client_conf.prototxt",
concurrency=1,
timeout=-1,
retry=1)
cnn_op = Op(name="cnn",
input_ops=[read_op],
server_endpoints=["127.0.0.1:9292"],
fetch_list=["prediction"],
client_config="imdb_cnn_client_conf/serving_client_conf.prototxt",
concurrency=1,
timeout=-1,
retry=1)
combine_op = CombineOp(
name="combine",
input_ops=[bow_op, cnn_op],
concurrency=5,
timeout=-1,
retry=1)
# use default ResponseOp implementation
response_op = ResponseOp(input_ops=[combine_op])
server = PipelineServer()
server.set_response_op(response_op)
server.prepare_server('config.yml')
server.run_server()
```
### Perform prediction through PipelineClient
```python
from paddle_serving_client.pipeline import PipelineClient
import numpy as np
client = PipelineClient()
client.connect(['127.0.0.1:18080'])
words = 'i am very sad | 0'
futures = []
for i in range(3):
futures.append(
client.predict(
feed_dict={"words": words},
fetch=["prediction"],
asyn=True))
for f in futures:
res = f.result()
if res["ecode"] != 0:
print(res)
exit(1)
```
## How to optimize through the timeline tool
In order to better optimize the performance, PipelineServing provides a timeline tool to monitor the time of each stage of the whole service.
### Output profile information on server side
The server is controlled by the `use_profile` field in yaml:
```yaml
dag:
use_profile: true
```
After the function is enabled, the server will print the corresponding log information to the standard output in the process of prediction. In order to show the time consumption of each stage more intuitively, scripts are provided for further analysis and processing of log files.
The output of the server is first saved to a file. Taking profile as an example, the script converts the time monitoring information in the log into JSON format and saves it to the trace file. The trace file can be visualized through the tracing function of Chrome browser.
```shell
python timeline_trace.py profile trace
```
Specific operation: open Chrome browser, input in the address bar `chrome://tracing/` , jump to the tracing page, click the load button, open the saved trace file, and then visualize the time information of each stage of the prediction service.
### Output profile information on client side
The profile function can be enabled by setting `profile=True` in the `predict` interface on the client side.
After the function is enabled, the client will print the log information corresponding to the prediction to the standard output during the prediction process, and the subsequent analysis and processing are the same as that of the server.
# Pipeline Serving
(简体中文|[English](PIPELINE_SERVING.md))
Paddle Serving 通常用于单模型的一键部署,但端到端的深度学习模型当前还不能解决所有问题,多个深度学习模型配合起来使用还是解决现实问题的常规手段。
Paddle Serving 提供了用户友好的多模型组合服务编程框架,Pipeline Serving,旨在降低编程门槛,提高资源使用率(尤其是GPU设备),提升整体的预估效率。
## 整体架构设计
Server端基于 gRPC 和图执行引擎构建,两者的关系如下图所示。
<center>
<img src='pipeline_serving-image1.png' height = "250" align="middle"/>
</center>
### 图执行引擎
图执行引擎由 OP 和 Channel 构成,相连接的 OP 之间会共享一个 Channel。
- Channel 可以理解为一个缓冲队列。每个 OP 只接受一个 Channel 的输入和多个 Channel 的输出(每个输出相同);一个 Channel 可以包含来自多个 OP 的输出,同一个 Channel 的数据可以作为多个 OP 的输入Channel
- 用户只需要定义 OP 间的关系,在编译期图引擎负责分析整个图的依赖关系,并声明Channel
- Request 进入图执行引擎服务后会产生一个 Request Id,Reponse 会通过 Request Id 进行对应的返回
- 对于 OP 之间需要传输过大数据的情况,可以考虑 RAM DB 外存进行全局存储,通过在 Channel 中传递索引的 Key 来进行数据传输
<center>
<img src='pipeline_serving-image2.png' height = "300" align="middle"/>
</center>
### OP的设计
- 单个OP默认的功能是根据输入的 Channel 数据,访问一个 Paddle Serving 的单模型服务,并将结果存在输出的 Channel
- 单个 OP 可以支持用户自定义,包括 preprocess,process,postprocess 三个函数都可以由用户继承和实现
- 单个 OP 可以控制并发数,从而增加处理并发数
- OP 可以由线程或进程启动
### Channel的设计
- Channel 是 OP 之间共享数据的数据结构,负责共享数据或者共享数据状态信息
- Channel 可以支持多个OP的输出存储在同一个 Channel,同一个 Channel 中的数据可以被多个 OP 使用
- 下图为图执行引擎中 Channel 的设计,采用 input buffer 和 output buffer 进行多 OP 输入或多 OP 输出的数据对齐,中间采用一个 Queue 进行缓冲
<center>
<img src='pipeline_serving-image3.png' height = "500" align="middle"/>
</center>
### 极端情况的考虑
- 请求超时的处理
整个图执行引擎每一步都有可能发生超时,图执行引擎里面通过设置 timeout 值来控制,任何环节超时的请求都会返回超时响应。
- Channel 存储的数据过大
Channel 中可能会存储过大的数据,导致拷贝等耗时过高,图执行引擎里面可以通过将 OP 计算结果数据存储到外存,如高速的内存 KV 系统
- Channel 设计中的 input buffer 和 output buffer 是否会无限增加
- 不会。整个图执行引擎的输入会放到一个 Channel 的 internal queue 里面,直接作为整个服务的流量控制缓冲队列
- 对于 input buffer,根据计算量的情况调整 OP1 和 OP2 的并发数,使得 input buffer 来自各个输入 OP 的数量相对平衡
- 对于 output buffer,可以采用和 input buffer 类似的处理方法,即调整 OP3 和 OP4 的并发数,使得 output buffer 的缓冲长度得到控制
- 注:input buffer 的长度取决于 internal queue 中每个 item 完全 ready 的速度,output buffer 的长度取决于下游 OP 从 output buffer 获取数据的速度
## 详细设计
### 用户接口设计
#### 1. 普通 OP 定义
普通 OP 作为图执行引擎中的基本单元,其构造函数如下:
```python
def __init__(name=None,
input_ops=[],
server_endpoints=[],
fetch_list=[],
client_config=None,
concurrency=1,
timeout=-1,
retry=1)
```
各参数含义如下
| 参数名 | 含义 |
| :--------------: | :----------------------------------------------------------: |
| name | (str)用于标识 OP 类型的字符串,该字段必须全局唯一。 |
| input_ops | (list)当前 OP 的所有前继 OP 的列表。 |
| server_endpoints | (list)远程 Paddle Serving Service 的 endpoints 列表。如果不设置该参数,则不访问远程 Paddle Serving Service,即 不会执行 process 操作。 |
| fetch_list | (list)远程 Paddle Serving Service 的 fetch 列表。 |
| client_config | (str)Paddle Serving Service 对应的 Client 端配置文件路径。 |
| concurrency | (int)OP 的并发数。 |
| timeout | (int)process 操作的超时时间,单位为秒。若该值小于零,则视作不超时。 |
| retry | (int)超时重试次数。当该值为 1 时,不进行重试。 |
#### 2. 普通 OP二次开发接口
| 变量或接口 | 说明 |
| :--------------------------------------------: | :----------------------------------------------------------: |
| def preprocess(self, input_dicts) | 对从 Channel 中获取的数据进行处理,处理完的数据将作为 **process** 函数的输入。 |
| def process(self, feed_dict) | 基于 Paddle Serving Client 进行 RPC 预测,处理完的数据将作为 **postprocess** 函数的输入。 |
| def postprocess(self, input_dicts, fetch_dict) | 处理预测结果,处理完的数据将被放入后继 Channel 中,以被后继 OP 获取。 |
| def init_op(self) | 用于加载资源(如字典等)。 |
| self.concurrency_idx | 当前线程(进程)的并发数索引(不同种类的 OP 单独计算)。 |
OP 在一个运行周期中会依次执行 preprocess,process,postprocess 三个操作(当不设置 `server_endpoints` 参数时,不执行 process 操作),用户可以对这三个函数进行重写,默认实现如下:
```python
def preprocess(self, input_dicts):
# multiple previous Op
if len(input_dicts) != 1:
raise NotImplementedError(
'this Op has multiple previous inputs. Please override this func.'
(_, input_dict), = input_dicts.items()
return input_dict
def process(self, feed_dict):
err, err_info = ChannelData.check_npdata(feed_dict)
if err != 0:
raise NotImplementedError(
"{} Please override preprocess func.".format(err_info))
call_result = self.client.predict(
feed=feed_dict, fetch=self._fetch_names)
return call_result
def postprocess(self, input_dicts, fetch_dict):
return fetch_dict
```
**preprocess** 的参数是前继 Channel 中的数据 `input_dicts`,该变量是一个以前继 OP 的 name 为 Key,对应 OP 的输出为 Value 的字典。
**process** 的参数是 Paddle Serving Client 预测接口的输入变量 `fetch_dict`(preprocess 函数的返回值),该变量是一个以 feed_name 为 Key,对应 ndarray 格式的数据为 Value 的字典。
**postprocess** 的参数是 `input_dicts``fetch_dict``input_dicts` 与 preprocess 的参数一致,`fetch_dict` 是 process 函数的返回值(如果没有执行 process ,则该值为 preprocess 的返回值)。
用户还可以对 **init_op** 函数进行重写,已加载自定义的一些资源(比如字典等),默认实现如下:
```python
def init_op(self):
pass
```
需要注意的是,在线程版 OP 中,每个 OP 只会调用一次该函数,故加载的资源必须要求是线程安全的。
#### 3. RequestOp 定义
RequestOp 用于处理 Pipeline Server 接收到的 RPC 数据,处理后的数据将会被加入到图执行引擎中。其构造函数如下:
```python
def __init__(self)
```
#### 4. RequestOp 二次开发接口
| 变量或接口 | 说明 |
| :---------------------------------------: | :----------------------------------------: |
| def init_op(self) | 用于加载资源(如字典等),与普通 OP 一致。 |
| def unpack_request_package(self, request) | 处理接收到的 RPC 数据。 |
**unpack_request_package** 的默认实现是将 RPC request 中的 key 和 value 做成字典:
```python
def unpack_request_package(self, request):
dictdata = {}
for idx, key in enumerate(request.key):
data = request.value[idx]
try:
data = eval(data)
except Exception as e:
pass
dictdata[key] = data
return dictdata
```
要求返回值是一个字典类型。
#### 5. ResponseOp 定义
ResponseOp 用于处理图执行引擎的预测结果,处理后的数据将会作为 Pipeline Server 的RPC 返回值,其构造函数如下:
```python
def __init__(self, input_ops)
```
其中,`input_ops` 是图执行引擎的最后一个 OP,用户可以通过设置不同的 `input_ops` 以在不修改 OP 的拓扑关系下构造不同的 DAG。
#### 6. ResponseOp 二次开发接口
| 变量或接口 | 说明 |
| :------------------------------------------: | :-----------------------------------------: |
| def init_op(self) | 用于加载资源(如字典等),与普通 OP 一致。 |
| def pack_response_package(self, channeldata) | 处理图执行引擎的预测结果,作为 RPC 的返回。 |
**pack_response_package** 的默认实现是将预测结果的字典转化为 RPC response 中的 key 和 value:
```python
def pack_response_package(self, channeldata):
resp = pipeline_service_pb2.Response()
resp.ecode = channeldata.ecode
if resp.ecode == ChannelDataEcode.OK.value:
if channeldata.datatype == ChannelDataType.CHANNEL_NPDATA.value:
feed = channeldata.parse()
np.set_printoptions(threshold=np.nan)
for name, var in feed.items():
resp.value.append(var.__repr__())
resp.key.append(name)
elif channeldata.datatype == ChannelDataType.DICT.value:
feed = channeldata.parse()
for name, var in feed.items():
if not isinstance(var, str):
resp.ecode = ChannelDataEcode.TYPE_ERROR.value
resp.error_info = self._log(
"fetch var type must be str({}).".format(type(var)))
break
resp.value.append(var)
resp.key.append(name)
else:
resp.ecode = ChannelDataEcode.TYPE_ERROR.value
resp.error_info = self._log(
"Error type({}) in datatype.".format(channeldata.datatype))
else:
resp.error_info = channeldata.error_info
return resp
```
#### 7. PipelineServer定义
PipelineServer 的定义比较简单,如下所示:
```python
server = PipelineServer()
server.set_response_op(response_op)
server.prepare_server(config_yml_path)
server.run_server()
```
其中,`response_op` 为上面提到的 ResponseOp,PipelineServer 将会根据各个 OP 的拓扑关系初始化 Channel 并构建计算图。`config_yml_path` 为 PipelineServer 的配置文件,示例文件如下:
```yaml
port: 18080 # gRPC端口号
worker_num: 1 # gRPC线程池大小(进程版 Servicer 中为进程数),默认为 1
build_dag_each_worker: false # 是否使用进程版 Servicer,默认为 false
dag:
is_thread_op: true # 是否使用线程版Op,默认为 true
client_type: brpc # 使用 brpc 或 grpc client,默认为 brpc
retry: 1 # DAG Executor 在失败后重试次数,默认为 1,即不重试
use_profile: false # 是否在 Server 端打印日志,默认为 false
```
## 例子
这里通过搭建简单的 imdb model ensemble 例子来展示如何使用 Pipeline Serving,相关代码在 `python/examples/pipeline/imdb_model_ensemble` 文件夹下可以找到,例子中的 Server 端结构如下图所示:
<center>
<img src='pipeline_serving-image4.png' height = "200" align="middle"/>
</center>
### 获取模型文件并启动 Paddle Serving Service
```shell
cd python/examples/pipeline/imdb_model_ensemble
sh get_data.sh
python -m paddle_serving_server.serve --model imdb_cnn_model --port 9292 &> cnn.log &
python -m paddle_serving_server.serve --model imdb_bow_model --port 9393 &> bow.log &
```
### 启动 PipelineServer
运行下面代码
```python
from paddle_serving_server.pipeline import Op, RequestOp, ResponseOp
from paddle_serving_server.pipeline import PipelineServer
from paddle_serving_server.pipeline.proto import pipeline_service_pb2
from paddle_serving_server.pipeline.channel import ChannelDataEcode
import numpy as np
import logging
from paddle_serving_app.reader import IMDBDataset
logging.basicConfig(level=logging.DEBUG)
_LOGGER = logging.getLogger()
class ImdbRequestOp(RequestOp):
def init_op(self):
self.imdb_dataset = IMDBDataset()
self.imdb_dataset.load_resource('imdb.vocab')
def unpack_request_package(self, request):
dictdata = {}
for idx, key in enumerate(request.key):
if key != "words":
continue
words = request.value[idx]
word_ids, _ = self.imdb_dataset.get_words_and_label(words)
dictdata[key] = np.array(word_ids)
return dictdata
class CombineOp(Op):
def preprocess(self, input_data):
combined_prediction = 0
for op_name, data in input_data.items():
_LOGGER.info("{}: {}".format(op_name, data["prediction"]))
combined_prediction += data["prediction"]
data = {"prediction": combined_prediction / 2}
return data
read_op = ImdbRequestOp()
bow_op = Op(name="bow",
input_ops=[read_op],
server_endpoints=["127.0.0.1:9393"],
fetch_list=["prediction"],
client_config="imdb_bow_client_conf/serving_client_conf.prototxt",
concurrency=1,
timeout=-1,
retry=1)
cnn_op = Op(name="cnn",
input_ops=[read_op],
server_endpoints=["127.0.0.1:9292"],
fetch_list=["prediction"],
client_config="imdb_cnn_client_conf/serving_client_conf.prototxt",
concurrency=1,
timeout=-1,
retry=1)
combine_op = CombineOp(
name="combine",
input_ops=[bow_op, cnn_op],
concurrency=5,
timeout=-1,
retry=1)
# use default ResponseOp implementation
response_op = ResponseOp(input_ops=[combine_op])
server = PipelineServer()
server.set_response_op(response_op)
server.prepare_server('config.yml')
server.run_server()
```
### 通过 PipelineClient 执行预测
```python
from paddle_serving_client.pipeline import PipelineClient
import numpy as np
client = PipelineClient()
client.connect(['127.0.0.1:18080'])
words = 'i am very sad | 0'
futures = []
for i in range(3):
futures.append(
client.predict(
feed_dict={"words": words},
fetch=["prediction"],
asyn=True))
for f in futures:
res = f.result()
if res["ecode"] != 0:
print(res)
exit(1)
```
## 如何通过 Timeline 工具进行优化
为了更好地对性能进行优化,PipelineServing 提供了 Timeline 工具,对整个服务的各个阶段时间进行打点。
### 在 Server 端输出 Profile 信息
Server 端用 yaml 中的 `use_profile` 字段进行控制:
```yaml
dag:
use_profile: true
```
开启该功能后,Server 端在预测的过程中会将对应的日志信息打印到标准输出,为了更直观地展现各阶段的耗时,提供脚本对日志文件做进一步的分析处理。
使用时先将 Server 的输出保存到文件,以 profile 为例,脚本将日志中的时间打点信息转换成 json 格式保存到trace 文件,trace 文件可以通过 chrome 浏览器的 tracing 功能进行可视化。
```shell
python timeline_trace.py profile trace
```
具体操作:打开 chrome 浏览器,在地址栏输入 chrome://tracing/ ,跳转至 tracing 页面,点击 load 按钮,打开保存的 trace 文件,即可将预测服务的各阶段时间信息可视化。
### 在 Client 端输出 Profile 信息
Client 端在 `predict` 接口设置 `profile=True`,即可开启 Profile 功能。
开启该功能后,Client 端在预测的过程中会将该次预测对应的日志信息打印到标准输出,后续分析处理同 Server。
# Paddle Serving
([简体中文](./README_CN.md)|English)
Paddle Serving is PaddlePaddle's online estimation service framework, which can help developers easily implement remote prediction services that call deep learning models from mobile and server ends. At present, Paddle Serving is mainly based on models that support PaddlePaddle training. It can be used in conjunction with the Paddle training framework to quickly deploy inference services. Paddle Serving is designed around common industrial-level deep learning model deployment scenarios. Some common functions include multi-model management, model hot loading, [Baidu-rpc](https://github.com/apache/incubator-brpc)-based high-concurrency low-latency response capabilities, and online model A/B tests. The API that cooperates with the Paddle training framework can enable users to seamlessly transition between training and remote deployment, improving the landing efficiency of deep learning models.
------------
## Quick Start
Paddle Serving's current develop version supports lightweight Python API for fast predictions, and training with Paddle can get through. We take the most classic Boston house price prediction as an example to fully explain the process of model training on a single machine and model deployment using Paddle Serving.
#### Install
It is highly recommended that you build Paddle Serving inside Docker, please read [How to run PaddleServing in Docker](RUN_IN_DOCKER.md)
```
pip install paddle-serving-client
pip install paddle-serving-server
```
#### Training Script
``` python
import sys
import paddle
import paddle.fluid as fluid
train_reader = paddle.batch(paddle.reader.shuffle(
paddle.dataset.uci_housing.train(), buf_size=500), batch_size=16)
test_reader = paddle.batch(paddle.reader.shuffle(
paddle.dataset.uci_housing.test(), buf_size=500), batch_size=16)
x = fluid.data(name='x', shape=[None, 13], dtype='float32')
y = fluid.data(name='y', shape=[None, 1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_loss = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.01)
sgd_optimizer.minimize(avg_loss)
place = fluid.CPUPlace()
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
import paddle_serving_client.io as serving_io
for pass_id in range(30):
for data_train in train_reader():
avg_loss_value, = exe.run(
fluid.default_main_program(),
feed=feeder.feed(data_train),
fetch_list=[avg_loss])
serving_io.save_model(
"serving_server_model", "serving_client_conf",
{"x": x}, {"y": y_predict}, fluid.default_main_program())
```
#### Server Side Code
``` python
import sys
from paddle_serving.serving_server import OpMaker
from paddle_serving.serving_server import OpSeqMaker
from paddle_serving.serving_server import Server
op_maker = OpMaker()
read_op = op_maker.create('general_reader')
general_infer_op = op_maker.create('general_infer')
op_seq_maker = OpSeqMaker()
op_seq_maker.add_op(read_op)
op_seq_maker.add_op(general_infer_op)
server = Server()
server.set_op_sequence(op_seq_maker.get_op_sequence())
server.load_model_config(sys.argv[1])
server.prepare_server(workdir="work_dir1", port=9393, device="cpu")
server.run_server()
```
#### Launch Server End
``` shell
python test_server.py serving_server_model
```
#### Client Prediction
``` python
from paddle_serving_client import Client
import paddle
import sys
client = Client()
client.load_client_config(sys.argv[1])
client.connect(["127.0.0.1:9292"])
test_reader = paddle.batch(paddle.reader.shuffle(
paddle.dataset.uci_housing.test(), buf_size=500), batch_size=1)
for data in test_reader():
fetch_map = client.predict(feed={"x": data[0][0]}, fetch=["y"])
print("{} {}".format(fetch_map["y"][0], data[0][1][0]))
```
### Document
[Design Doc](DESIGN.md)
[FAQ](./deprecated/FAQ.md)
### Senior Developer Guildlines
[Compile Tutorial](COMPILE.md)
## Contribution
If you want to make contributions to Paddle Serving Please refer to [CONRTIBUTE](CONTRIBUTE.md)
# Paddle Serving
(简体中文|[English](./README.md))
Paddle Serving是PaddlePaddle的在线预估服务框架,能够帮助开发者轻松实现从移动端、服务器端调用深度学习模型的远程预测服务。当前Paddle Serving以支持PaddlePaddle训练的模型为主,可以与Paddle训练框架联合使用,快速部署预估服务。Paddle Serving围绕常见的工业级深度学习模型部署场景进行设计,一些常见的功能包括多模型管理、模型热加载、基于[Baidu-rpc](https://github.com/apache/incubator-brpc)的高并发低延迟响应能力、在线模型A/B实验等。与Paddle训练框架互相配合的API可以使用户在训练与远程部署之间无缝过度,提升深度学习模型的落地效率。
------------
## 快速上手指南
Paddle Serving当前的develop版本支持轻量级Python API进行快速预测,并且与Paddle的训练可以打通。我们以最经典的波士顿房价预测为示例,完整说明在单机进行模型训练以及使用Paddle Serving进行模型部署的过程。
#### 安装
强烈建议您在Docker内构建Paddle Serving,请查看[如何在Docker中运行PaddleServing](RUN_IN_DOCKER_CN.md)
```
pip install paddle-serving-client
pip install paddle-serving-server
```
#### 训练脚本
``` python
import sys
import paddle
import paddle.fluid as fluid
train_reader = paddle.batch(paddle.reader.shuffle(
paddle.dataset.uci_housing.train(), buf_size=500), batch_size=16)
test_reader = paddle.batch(paddle.reader.shuffle(
paddle.dataset.uci_housing.test(), buf_size=500), batch_size=16)
x = fluid.data(name='x', shape=[None, 13], dtype='float32')
y = fluid.data(name='y', shape=[None, 1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_loss = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.01)
sgd_optimizer.minimize(avg_loss)
place = fluid.CPUPlace()
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
import paddle_serving_client.io as serving_io
for pass_id in range(30):
for data_train in train_reader():
avg_loss_value, = exe.run(
fluid.default_main_program(),
feed=feeder.feed(data_train),
fetch_list=[avg_loss])
serving_io.save_model(
"serving_server_model", "serving_client_conf",
{"x": x}, {"y": y_predict}, fluid.default_main_program())
```
#### 服务器端代码
``` python
import sys
from paddle_serving.serving_server import OpMaker
from paddle_serving.serving_server import OpSeqMaker
from paddle_serving.serving_server import Server
op_maker = OpMaker()
read_op = op_maker.create('general_reader')
general_infer_op = op_maker.create('general_infer')
op_seq_maker = OpSeqMaker()
op_seq_maker.add_op(read_op)
op_seq_maker.add_op(general_infer_op)
server = Server()
server.set_op_sequence(op_seq_maker.get_op_sequence())
server.load_model_config(sys.argv[1])
server.prepare_server(workdir="work_dir1", port=9393, device="cpu")
server.run_server()
```
#### 服务器端启动
``` shell
python test_server.py serving_server_model
```
#### 客户端预测
``` python
from paddle_serving_client import Client
import paddle
import sys
client = Client()
client.load_client_config(sys.argv[1])
client.connect(["127.0.0.1:9292"])
test_reader = paddle.batch(paddle.reader.shuffle(
paddle.dataset.uci_housing.test(), buf_size=500), batch_size=1)
for data in test_reader():
fetch_map = client.predict(feed={"x": data[0][0]}, fetch=["y"])
print("{} {}".format(fetch_map["y"][0], data[0][1][0]))
```
### 文档
[设计文档](DESIGN_CN.md)
[FAQ](./deprecated/FAQ.md)
### 资深开发者使用指南
[编译指南](COMPILE_CN.md)
## 贡献
如果你想要给Paddle Serving做贡献,请参考[贡献指南](CONTRIBUTE.md)
......@@ -12,21 +12,12 @@ This document takes Python2 as an example to show how to run Paddle Serving in d
### Get docker image
You can get images in two ways:
Refer to [this document](DOCKER_IMAGES.md) for a docker image:
1. Pull image directly
```bash
docker pull hub.baidubce.com/paddlepaddle/serving:latest
```
2. Building image based on dockerfile
Create a new folder and copy [Dockerfile](../tools/Dockerfile) to this folder, and run the following command:
```shell
docker pull hub.baidubce.com/paddlepaddle/serving:latest
```
```bash
docker build -t hub.baidubce.com/paddlepaddle/serving:latest .
```
### Create container
......@@ -104,26 +95,16 @@ The GPU version is basically the same as the CPU version, with only some differe
### Get docker image
You can also get images in two ways:
1. Pull image directly
Refer to [this document](DOCKER_IMAGES.md) for a docker image, the following is an example of an `cuda9.0-cudnn7` image:
```bash
nvidia-docker pull hub.baidubce.com/paddlepaddle/serving:latest-gpu
```
2. Building image based on dockerfile
Create a new folder and copy [Dockerfile.gpu](../tools/Dockerfile.gpu) to this folder, and run the following command:
```bash
nvidia-docker build -t hub.baidubce.com/paddlepaddle/serving:latest-gpu .
```
```shell
nvidia-docker pull hub.baidubce.com/paddlepaddle/serving:latest-cuda9.0-cudnn7
```
### Create container
```bash
nvidia-docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:latest-gpu
nvidia-docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:latest-cuda9.0-cudnn7
nvidia-docker exec -it test bash
```
......@@ -200,4 +181,4 @@ tar -xzf uci_housing.tar.gz
## Attention
The images provided by this document are all runtime images, which do not support compilation. If you want to compile from source, refer to [COMPILE](COMPILE.md).
Runtime images cannot be used for compilation. If you want to compile from source, refer to [COMPILE](COMPILE.md).
......@@ -12,21 +12,12 @@ Docker(GPU版本需要在GPU机器上安装nvidia-docker)
### 获取镜像
可以通过两种方式获取镜像。
参考[该文档](DOCKER_IMAGES_CN.md)获取镜像:
1. 直接拉取镜像
```bash
docker pull hub.baidubce.com/paddlepaddle/serving:latest
```
2. 基于Dockerfile构建镜像
建立新目录,复制[Dockerfile](../tools/Dockerfile)内容到该目录下Dockerfile文件。执行
```shell
docker pull hub.baidubce.com/paddlepaddle/serving:latest
```
```bash
docker build -t hub.baidubce.com/paddlepaddle/serving:latest .
```
### 创建容器并进入
......@@ -102,26 +93,16 @@ GPU版本与CPU版本基本一致,只有部分接口命名的差别(GPU版
### 获取镜像
可以通过两种方式获取镜像。
1. 直接拉取镜像
参考[该文档](DOCKER_IMAGES_CN.md)获取镜像,这里以 `cuda9.0-cudnn7` 的镜像为例:
```bash
nvidia-docker pull hub.baidubce.com/paddlepaddle/serving:latest-gpu
```
2. 基于Dockerfile构建镜像
建立新目录,复制[Dockerfile.gpu](../tools/Dockerfile.gpu)内容到该目录下Dockerfile文件。执行
```bash
nvidia-docker build -t hub.baidubce.com/paddlepaddle/serving:latest-gpu .
```
```shell
nvidia-docker pull hub.baidubce.com/paddlepaddle/serving:latest-cuda9.0-cudnn7
```
### 创建容器并进入
```bash
nvidia-docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:latest-gpu
nvidia-docker run -p 9292:9292 --name test -dit hub.baidubce.com/paddlepaddle/serving:latest-cuda9.0-cudnn7
nvidia-docker exec -it test bash
```
......@@ -195,4 +176,4 @@ tar -xzf uci_housing.tar.gz
## 注意事项
该文档提供的镜像均为运行镜像,不支持开发编译。如果想要从源码编译,请查看[如何编译PaddleServing](COMPILE.md)
运行时镜像不能用于开发编译。如果想要从源码编译,请查看[如何编译PaddleServing](COMPILE.md)
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>io.paddle.serving.client</groupId>
<artifactId>paddle-serving-sdk-java-examples</artifactId>
<version>0.0.1</version>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>8</source>
<target>8</target>
</configuration>
<version>3.8.1</version>
</plugin>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<archive>
<manifest>
<addClasspath>true</addClasspath>
<mainClass>my.fully.qualified.class.Main</mainClass>
</manifest>
</archive>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-my-jar-with-dependencies</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<nd4j.backend>nd4j-native</nd4j.backend>
<nd4j.version>1.0.0-beta7</nd4j.version>
<datavec.version>1.0.0-beta7</datavec.version>
<paddle.serving.client.version>0.0.1</paddle.serving.client.version>
<maven.compiler.source>1.7</maven.compiler.source>
<maven.compiler.target>1.7</maven.compiler.target>
</properties>
<dependencies>
<dependency>
<groupId>io.paddle.serving.client</groupId>
<artifactId>paddle-serving-sdk-java</artifactId>
<version>${paddle.serving.client.version}</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>1.7.30</version>
</dependency>
<dependency>
<groupId>org.nd4j</groupId>
<artifactId>${nd4j.backend}</artifactId>
<version>${nd4j.version}</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.11</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.datavec</groupId>
<artifactId>datavec-data-image</artifactId>
<version>${datavec.version}</version>
</dependency>
</dependencies>
</project>
import io.paddle.serving.client.*;
import java.io.File;
import java.io.IOException;
import java.net.URL;
import org.nd4j.linalg.api.iter.NdIndexIterator;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.datavec.image.loader.NativeImageLoader;
import org.nd4j.linalg.api.ops.CustomOp;
import org.nd4j.linalg.api.ops.DynamicCustomOp;
import org.nd4j.linalg.factory.Nd4j;
import java.util.*;
public class PaddleServingClientExample {
boolean fit_a_line() {
float[] data = {0.0137f, -0.1136f, 0.2553f, -0.0692f,
0.0582f, -0.0727f, -0.1583f, -0.0584f,
0.6283f, 0.4919f, 0.1856f, 0.0795f, -0.0332f};
INDArray npdata = Nd4j.createFromArray(data);
HashMap<String, INDArray> feed_data
= new HashMap<String, INDArray>() {{
put("x", npdata);
}};
List<String> fetch = Arrays.asList("price");
Client client = new Client();
String target = "localhost:9393";
boolean succ = client.connect(target);
if (succ != true) {
System.out.println("connect failed.");
return false;
}
Map<String, INDArray> fetch_map = client.predict(feed_data, fetch);
if (fetch_map == null) {
return false;
}
for (Map.Entry<String, INDArray> e : fetch_map.entrySet()) {
System.out.println("Key = " + e.getKey() + ", Value = " + e.getValue());
}
return true;
}
boolean yolov4(String filename) {
// https://deeplearning4j.konduit.ai/
int height = 608;
int width = 608;
int channels = 3;
NativeImageLoader loader = new NativeImageLoader(height, width, channels);
INDArray BGRimage = null;
try {
BGRimage = loader.asMatrix(new File(filename));
} catch (java.io.IOException e) {
System.out.println("load image fail.");
return false;
}
// shape: (channels, height, width)
BGRimage = BGRimage.reshape(channels, height, width);
INDArray RGBimage = Nd4j.create(BGRimage.shape());
// BGR2RGB
CustomOp op = DynamicCustomOp.builder("reverse")
.addInputs(BGRimage)
.addOutputs(RGBimage)
.addIntegerArguments(0)
.build();
Nd4j.getExecutioner().exec(op);
// Div(255.0)
INDArray image = RGBimage.divi(255.0);
INDArray im_size = Nd4j.createFromArray(new int[]{height, width});
HashMap<String, INDArray> feed_data
= new HashMap<String, INDArray>() {{
put("image", image);
put("im_size", im_size);
}};
List<String> fetch = Arrays.asList("save_infer_model/scale_0.tmp_0");
Client client = new Client();
String target = "localhost:9393";
boolean succ = client.connect(target);
if (succ != true) {
System.out.println("connect failed.");
return false;
}
succ = client.setRpcTimeoutMs(20000); // cpu
if (succ != true) {
System.out.println("set timeout failed.");
return false;
}
Map<String, INDArray> fetch_map = client.predict(feed_data, fetch);
if (fetch_map == null) {
return false;
}
for (Map.Entry<String, INDArray> e : fetch_map.entrySet()) {
System.out.println("Key = " + e.getKey() + ", Value = " + e.getValue());
}
return true;
}
boolean batch_predict() {
float[] data = {0.0137f, -0.1136f, 0.2553f, -0.0692f,
0.0582f, -0.0727f, -0.1583f, -0.0584f,
0.6283f, 0.4919f, 0.1856f, 0.0795f, -0.0332f};
INDArray npdata = Nd4j.createFromArray(data);
HashMap<String, INDArray> feed_data
= new HashMap<String, INDArray>() {{
put("x", npdata);
}};
List<HashMap<String, INDArray>> feed_batch
= new ArrayList<HashMap<String, INDArray>>() {{
add(feed_data);
add(feed_data);
}};
List<String> fetch = Arrays.asList("price");
Client client = new Client();
String target = "localhost:9393";
boolean succ = client.connect(target);
if (succ != true) {
System.out.println("connect failed.");
return false;
}
Map<String, INDArray> fetch_map = client.predict(feed_batch, fetch);
if (fetch_map == null) {
return false;
}
for (Map.Entry<String, INDArray> e : fetch_map.entrySet()) {
System.out.println("Key = " + e.getKey() + ", Value = " + e.getValue());
}
return true;
}
boolean asyn_predict() {
float[] data = {0.0137f, -0.1136f, 0.2553f, -0.0692f,
0.0582f, -0.0727f, -0.1583f, -0.0584f,
0.6283f, 0.4919f, 0.1856f, 0.0795f, -0.0332f};
INDArray npdata = Nd4j.createFromArray(data);
HashMap<String, INDArray> feed_data
= new HashMap<String, INDArray>() {{
put("x", npdata);
}};
List<String> fetch = Arrays.asList("price");
Client client = new Client();
String target = "localhost:9393";
boolean succ = client.connect(target);
if (succ != true) {
System.out.println("connect failed.");
return false;
}
PredictFuture future = client.asyn_predict(feed_data, fetch);
Map<String, INDArray> fetch_map = future.get();
if (fetch_map == null) {
System.out.println("Get future reslut failed");
return false;
}
for (Map.Entry<String, INDArray> e : fetch_map.entrySet()) {
System.out.println("Key = " + e.getKey() + ", Value = " + e.getValue());
}
return true;
}
boolean model_ensemble() {
long[] data = {8, 233, 52, 601};
INDArray npdata = Nd4j.createFromArray(data);
HashMap<String, INDArray> feed_data
= new HashMap<String, INDArray>() {{
put("words", npdata);
}};
List<String> fetch = Arrays.asList("prediction");
Client client = new Client();
String target = "localhost:9393";
boolean succ = client.connect(target);
if (succ != true) {
System.out.println("connect failed.");
return false;
}
Map<String, HashMap<String, INDArray>> fetch_map
= client.ensemble_predict(feed_data, fetch);
if (fetch_map == null) {
return false;
}
for (Map.Entry<String, HashMap<String, INDArray>> entry : fetch_map.entrySet()) {
System.out.println("Model = " + entry.getKey());
HashMap<String, INDArray> tt = entry.getValue();
for (Map.Entry<String, INDArray> e : tt.entrySet()) {
System.out.println("Key = " + e.getKey() + ", Value = " + e.getValue());
}
}
return true;
}
boolean bert() {
float[] input_mask = {1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
long[] position_ids = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
long[] input_ids = {101, 6843, 3241, 749, 8024, 7662, 2533, 1391, 2533, 2523, 7676, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
long[] segment_ids = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
HashMap<String, INDArray> feed_data
= new HashMap<String, INDArray>() {{
put("input_mask", Nd4j.createFromArray(input_mask));
put("position_ids", Nd4j.createFromArray(position_ids));
put("input_ids", Nd4j.createFromArray(input_ids));
put("segment_ids", Nd4j.createFromArray(segment_ids));
}};
List<String> fetch = Arrays.asList("pooled_output");
Client client = new Client();
String target = "localhost:9393";
boolean succ = client.connect(target);
if (succ != true) {
System.out.println("connect failed.");
return false;
}
Map<String, INDArray> fetch_map = client.predict(feed_data, fetch);
if (fetch_map == null) {
return false;
}
for (Map.Entry<String, INDArray> e : fetch_map.entrySet()) {
System.out.println("Key = " + e.getKey() + ", Value = " + e.getValue());
}
return true;
}
boolean cube_local() {
long[] embedding_14 = {250644};
long[] embedding_2 = {890346};
long[] embedding_10 = {3939};
long[] embedding_17 = {421122};
long[] embedding_23 = {664215};
long[] embedding_6 = {704846};
float[] dense_input = {0.0f, 0.006633499170812604f, 0.03f, 0.0f,
0.145078125f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
long[] embedding_24 = {269955};
long[] embedding_12 = {295309};
long[] embedding_7 = {437731};
long[] embedding_3 = {990128};
long[] embedding_1 = {7753};
long[] embedding_4 = {286835};
long[] embedding_8 = {27346};
long[] embedding_9 = {636474};
long[] embedding_18 = {880474};
long[] embedding_16 = {681378};
long[] embedding_22 = {410878};
long[] embedding_13 = {255651};
long[] embedding_5 = {25207};
long[] embedding_11 = {10891};
long[] embedding_20 = {238459};
long[] embedding_21 = {26235};
long[] embedding_15 = {691460};
long[] embedding_25 = {544187};
long[] embedding_19 = {537425};
long[] embedding_0 = {737395};
HashMap<String, INDArray> feed_data
= new HashMap<String, INDArray>() {{
put("embedding_14.tmp_0", Nd4j.createFromArray(embedding_14));
put("embedding_2.tmp_0", Nd4j.createFromArray(embedding_2));
put("embedding_10.tmp_0", Nd4j.createFromArray(embedding_10));
put("embedding_17.tmp_0", Nd4j.createFromArray(embedding_17));
put("embedding_23.tmp_0", Nd4j.createFromArray(embedding_23));
put("embedding_6.tmp_0", Nd4j.createFromArray(embedding_6));
put("dense_input", Nd4j.createFromArray(dense_input));
put("embedding_24.tmp_0", Nd4j.createFromArray(embedding_24));
put("embedding_12.tmp_0", Nd4j.createFromArray(embedding_12));
put("embedding_7.tmp_0", Nd4j.createFromArray(embedding_7));
put("embedding_3.tmp_0", Nd4j.createFromArray(embedding_3));
put("embedding_1.tmp_0", Nd4j.createFromArray(embedding_1));
put("embedding_4.tmp_0", Nd4j.createFromArray(embedding_4));
put("embedding_8.tmp_0", Nd4j.createFromArray(embedding_8));
put("embedding_9.tmp_0", Nd4j.createFromArray(embedding_9));
put("embedding_18.tmp_0", Nd4j.createFromArray(embedding_18));
put("embedding_16.tmp_0", Nd4j.createFromArray(embedding_16));
put("embedding_22.tmp_0", Nd4j.createFromArray(embedding_22));
put("embedding_13.tmp_0", Nd4j.createFromArray(embedding_13));
put("embedding_5.tmp_0", Nd4j.createFromArray(embedding_5));
put("embedding_11.tmp_0", Nd4j.createFromArray(embedding_11));
put("embedding_20.tmp_0", Nd4j.createFromArray(embedding_20));
put("embedding_21.tmp_0", Nd4j.createFromArray(embedding_21));
put("embedding_15.tmp_0", Nd4j.createFromArray(embedding_15));
put("embedding_25.tmp_0", Nd4j.createFromArray(embedding_25));
put("embedding_19.tmp_0", Nd4j.createFromArray(embedding_19));
put("embedding_0.tmp_0", Nd4j.createFromArray(embedding_0));
}};
List<String> fetch = Arrays.asList("prob");
Client client = new Client();
String target = "localhost:9393";
boolean succ = client.connect(target);
if (succ != true) {
System.out.println("connect failed.");
return false;
}
Map<String, INDArray> fetch_map = client.predict(feed_data, fetch);
if (fetch_map == null) {
return false;
}
for (Map.Entry<String, INDArray> e : fetch_map.entrySet()) {
System.out.println("Key = " + e.getKey() + ", Value = " + e.getValue());
}
return true;
}
public static void main( String[] args ) {
// DL4J(Deep Learning for Java)Document:
// https://www.bookstack.cn/read/deeplearning4j/bcb48e8eeb38b0c6.md
PaddleServingClientExample e = new PaddleServingClientExample();
boolean succ = false;
if (args.length < 1) {
System.out.println("Usage: java -cp <jar> PaddleServingClientExample <test-type>.");
System.out.println("<test-type>: fit_a_line bert model_ensemble asyn_predict batch_predict cube_local cube_quant yolov4");
return;
}
String testType = args[0];
System.out.format("[Example] %s\n", testType);
if ("fit_a_line".equals(testType)) {
succ = e.fit_a_line();
} else if ("bert".equals(testType)) {
succ = e.bert();
} else if ("model_ensemble".equals(testType)) {
succ = e.model_ensemble();
} else if ("asyn_predict".equals(testType)) {
succ = e.asyn_predict();
} else if ("batch_predict".equals(testType)) {
succ = e.batch_predict();
} else if ("cube_local".equals(testType)) {
succ = e.cube_local();
} else if ("cube_quant".equals(testType)) {
succ = e.cube_local();
} else if ("yolov4".equals(testType)) {
if (args.length < 2) {
System.out.println("Usage: java -cp <jar> PaddleServingClientExample yolov4 <image-filepath>.");
return;
}
succ = e.yolov4(args[1]);
} else {
System.out.format("test-type(%s) not match.\n", testType);
return;
}
if (succ == true) {
System.out.println("[Example] succ.");
} else {
System.out.println("[Example] fail.");
}
}
}
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>io.paddle.serving.client</groupId>
<artifactId>paddle-serving-sdk-java</artifactId>
<version>0.0.1</version>
<packaging>jar</packaging>
<name>paddle-serving-sdk-java</name>
<description>Java SDK for Paddle Sering Client.</description>
<url>https://github.com/PaddlePaddle/Serving</url>
<licenses>
<license>
<name>Apache License, Version 2.0</name>
<url>http://www.apache.org/licenses/LICENSE-2.0.txt</url>
<distribution>repo</distribution>
</license>
</licenses>
<developers>
<developer>
<name>PaddlePaddle Author</name>
<email>guru4elephant@gmail.com</email>
<organization>PaddlePaddle</organization>
<organizationUrl>https://github.com/PaddlePaddle/Serving</organizationUrl>
</developer>
</developers>
<scm>
<connection>scm:git:https://github.com/PaddlePaddle/Serving.git</connection>
<developerConnection>scm:git:https://github.com/PaddlePaddle/Serving.git</developerConnection>
<url>https://github.com/PaddlePaddle/Serving</url>
</scm>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<grpc.version>1.27.2</grpc.version>
<protobuf.version>3.11.0</protobuf.version>
<protoc.version>3.11.0</protoc.version>
<nd4j.backend>nd4j-native</nd4j.backend>
<nd4j.version>1.0.0-beta7</nd4j.version>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
</properties>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>io.grpc</groupId>
<artifactId>grpc-bom</artifactId>
<version>${grpc.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<dependencies>
<dependency>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-gpg-plugin</artifactId>
<version>1.6</version>
</dependency>
<dependency>
<groupId>io.grpc</groupId>
<artifactId>grpc-netty-shaded</artifactId>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>io.grpc</groupId>
<artifactId>grpc-protobuf</artifactId>
</dependency>
<dependency>
<groupId>io.grpc</groupId>
<artifactId>grpc-stub</artifactId>
</dependency>
<dependency>
<groupId>javax.annotation</groupId>
<artifactId>javax.annotation-api</artifactId>
<version>1.2</version>
<scope>provided</scope> <!-- not needed at runtime -->
</dependency>
<dependency>
<groupId>io.grpc</groupId>
<artifactId>grpc-testing</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>com.google.protobuf</groupId>
<artifactId>protobuf-java-util</artifactId>
<version>${protobuf.version}</version>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>com.google.errorprone</groupId>
<artifactId>error_prone_annotations</artifactId>
<version>2.3.4</version> <!-- prefer to use 2.3.3 or later -->
</dependency>
<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter</artifactId>
<version>5.5.2</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-text</artifactId>
<version>1.6</version>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-collections4</artifactId>
<version>4.4</version>
</dependency>
<dependency>
<groupId>org.json</groupId>
<artifactId>json</artifactId>
<version>20190722</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>1.7.30</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-slf4j-impl</artifactId>
<version>2.12.1</version>
</dependency>
<dependency>
<groupId>org.nd4j</groupId>
<artifactId>${nd4j.backend}</artifactId>
<version>${nd4j.version}</version>
</dependency>
</dependencies>
<profiles>
<profile>
<id>release</id>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-source-plugin</artifactId>
<version>3.1.0</version>
<executions>
<execution>
<id>attach-sources</id>
<goals>
<goal>jar-no-fork</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-javadoc-plugin</artifactId>
<version>3.1.1</version>
<configuration>
<javadocExecutable>${java.home}/bin/javadoc</javadocExecutable>
</configuration>
<executions>
<execution>
<id>attach-javadocs</id>
<goals>
<goal>jar</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-gpg-plugin</artifactId>
<version>1.6</version>
<executions>
<execution>
<id>sign-artifacts</id>
<phase>verify</phase>
<goals>
<goal>sign</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</profile>
</profiles>
<build>
<extensions>
<extension>
<groupId>kr.motd.maven</groupId>
<artifactId>os-maven-plugin</artifactId>
<version>1.6.2</version>
</extension>
</extensions>
<plugins>
<plugin>
<groupId>org.sonatype.plugins</groupId>
<artifactId>nexus-staging-maven-plugin</artifactId>
<version>1.6.8</version>
<extensions>true</extensions>
<configuration>
<serverId>ossrh</serverId>
<nexusUrl>https://oss.sonatype.org/</nexusUrl>
<autoReleaseAfterClose>true</autoReleaseAfterClose>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-release-plugin</artifactId>
<version>2.5.3</version>
<configuration>
<autoVersionSubmodules>true</autoVersionSubmodules>
<useReleaseProfile>false</useReleaseProfile>
<releaseProfiles>release</releaseProfiles>
<goals>deploy</goals>
</configuration>
</plugin>
<plugin>
<groupId>org.xolstice.maven.plugins</groupId>
<artifactId>protobuf-maven-plugin</artifactId>
<version>0.6.1</version>
<configuration>
<protocArtifact>com.google.protobuf:protoc:${protoc.version}:exe:${os.detected.classifier}
</protocArtifact>
<pluginId>grpc-java</pluginId>
<pluginArtifact>io.grpc:protoc-gen-grpc-java:${grpc.version}:exe:${os.detected.classifier}
</pluginArtifact>
</configuration>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>compile-custom</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-enforcer-plugin</artifactId>
<version>3.0.0-M2</version>
<executions>
<execution>
<id>enforce</id>
<configuration>
<rules>
<requireUpperBoundDeps/>
</rules>
</configuration>
<goals>
<goal>enforce</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
package io.paddle.serving.client;
import java.util.*;
import java.util.function.Function;
import java.lang.management.ManagementFactory;
import java.lang.management.RuntimeMXBean;
import io.grpc.ManagedChannel;
import io.grpc.ManagedChannelBuilder;
import io.grpc.StatusRuntimeException;
import com.google.protobuf.ByteString;
import com.google.common.util.concurrent.ListenableFuture;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.iter.NdIndexIterator;
import org.nd4j.linalg.factory.Nd4j;
import io.paddle.serving.grpc.*;
import io.paddle.serving.configure.*;
import io.paddle.serving.client.PredictFuture;
class Profiler {
int pid_;
String print_head_ = null;
List<String> time_record_ = null;
boolean enable_ = false;
Profiler() {
RuntimeMXBean runtimeMXBean = ManagementFactory.getRuntimeMXBean();
pid_ = Integer.valueOf(runtimeMXBean.getName().split("@")[0]).intValue();
print_head_ = "\nPROFILE\tpid:" + pid_ + "\t";
time_record_ = new ArrayList<String>();
time_record_.add(print_head_);
}
void record(String name) {
if (enable_) {
long ctime = System.currentTimeMillis() * 1000;
time_record_.add(name + ":" + String.valueOf(ctime) + " ");
}
}
void printProfile() {
if (enable_) {
String profile_str = String.join("", time_record_);
time_record_ = new ArrayList<String>();
time_record_.add(print_head_);
}
}
void enable(boolean flag) {
enable_ = flag;
}
}
public class Client {
private ManagedChannel channel_;
private MultiLangGeneralModelServiceGrpc.MultiLangGeneralModelServiceBlockingStub blockingStub_;
private MultiLangGeneralModelServiceGrpc.MultiLangGeneralModelServiceFutureStub futureStub_;
private double rpcTimeoutS_;
private List<String> feedNames_;
private Map<String, Integer> feedTypes_;
private Map<String, List<Integer>> feedShapes_;
private List<String> fetchNames_;
private Map<String, Integer> fetchTypes_;
private Set<String> lodTensorSet_;
private Map<String, Integer> feedTensorLen_;
private Profiler profiler_;
public Client() {
channel_ = null;
blockingStub_ = null;
futureStub_ = null;
rpcTimeoutS_ = 2;
feedNames_ = null;
feedTypes_ = null;
feedShapes_ = null;
fetchNames_ = null;
fetchTypes_ = null;
lodTensorSet_ = null;
feedTensorLen_ = null;
profiler_ = new Profiler();
boolean is_profile = false;
String FLAGS_profile_client = System.getenv("FLAGS_profile_client");
if (FLAGS_profile_client != null && FLAGS_profile_client.equals("1")) {
is_profile = true;
}
profiler_.enable(is_profile);
}
public boolean setRpcTimeoutMs(int rpc_timeout) {
if (futureStub_ == null || blockingStub_ == null) {
System.out.println("set timeout must be set after connect.");
return false;
}
rpcTimeoutS_ = rpc_timeout / 1000.0;
SetTimeoutRequest timeout_req = SetTimeoutRequest.newBuilder()
.setTimeoutMs(rpc_timeout)
.build();
SimpleResponse resp;
try {
resp = blockingStub_.setTimeout(timeout_req);
} catch (StatusRuntimeException e) {
System.out.format("Set RPC timeout failed: %s\n", e.toString());
return false;
}
return resp.getErrCode() == 0;
}
public boolean connect(String target) {
// TODO: target must be NameResolver-compliant URI
// https://grpc.github.io/grpc-java/javadoc/io/grpc/ManagedChannelBuilder.html
try {
channel_ = ManagedChannelBuilder.forTarget(target)
.defaultLoadBalancingPolicy("round_robin")
.maxInboundMessageSize(Integer.MAX_VALUE)
.usePlaintext()
.build();
blockingStub_ = MultiLangGeneralModelServiceGrpc.newBlockingStub(channel_);
futureStub_ = MultiLangGeneralModelServiceGrpc.newFutureStub(channel_);
} catch (Exception e) {
System.out.format("Connect failed: %s\n", e.toString());
return false;
}
GetClientConfigRequest get_client_config_req = GetClientConfigRequest.newBuilder().build();
GetClientConfigResponse resp;
try {
resp = blockingStub_.getClientConfig(get_client_config_req);
} catch (Exception e) {
System.out.format("Get Client config failed: %s\n", e.toString());
return false;
}
String model_config_str = resp.getClientConfigStr();
_parseModelConfig(model_config_str);
return true;
}
private void _parseModelConfig(String model_config_str) {
GeneralModelConfig.Builder model_conf_builder = GeneralModelConfig.newBuilder();
try {
com.google.protobuf.TextFormat.getParser().merge(model_config_str, model_conf_builder);
} catch (com.google.protobuf.TextFormat.ParseException e) {
System.out.format("Parse client config failed: %s\n", e.toString());
}
GeneralModelConfig model_conf = model_conf_builder.build();
feedNames_ = new ArrayList<String>();
fetchNames_ = new ArrayList<String>();
feedTypes_ = new HashMap<String, Integer>();
feedShapes_ = new HashMap<String, List<Integer>>();
fetchTypes_ = new HashMap<String, Integer>();
lodTensorSet_ = new HashSet<String>();
feedTensorLen_ = new HashMap<String, Integer>();
List<FeedVar> feed_var_list = model_conf.getFeedVarList();
for (FeedVar feed_var : feed_var_list) {
feedNames_.add(feed_var.getAliasName());
}
List<FetchVar> fetch_var_list = model_conf.getFetchVarList();
for (FetchVar fetch_var : fetch_var_list) {
fetchNames_.add(fetch_var.getAliasName());
}
for (int i = 0; i < feed_var_list.size(); ++i) {
FeedVar feed_var = feed_var_list.get(i);
String var_name = feed_var.getAliasName();
feedTypes_.put(var_name, feed_var.getFeedType());
feedShapes_.put(var_name, feed_var.getShapeList());
if (feed_var.getIsLodTensor()) {
lodTensorSet_.add(var_name);
} else {
int counter = 1;
for (int dim : feedShapes_.get(var_name)) {
counter *= dim;
}
feedTensorLen_.put(var_name, counter);
}
}
for (int i = 0; i < fetch_var_list.size(); i++) {
FetchVar fetch_var = fetch_var_list.get(i);
String var_name = fetch_var.getAliasName();
fetchTypes_.put(var_name, fetch_var.getFetchType());
if (fetch_var.getIsLodTensor()) {
lodTensorSet_.add(var_name);
}
}
}
private InferenceRequest _packInferenceRequest(
List<HashMap<String, INDArray>> feed_batch,
Iterable<String> fetch) throws IllegalArgumentException {
List<String> feed_var_names = new ArrayList<String>();
feed_var_names.addAll(feed_batch.get(0).keySet());
InferenceRequest.Builder req_builder = InferenceRequest.newBuilder()
.addAllFeedVarNames(feed_var_names)
.addAllFetchVarNames(fetch)
.setIsPython(false);
for (HashMap<String, INDArray> feed_data: feed_batch) {
FeedInst.Builder inst_builder = FeedInst.newBuilder();
for (String name: feed_var_names) {
Tensor.Builder tensor_builder = Tensor.newBuilder();
INDArray variable = feed_data.get(name);
long[] flattened_shape = {-1};
INDArray flattened_list = variable.reshape(flattened_shape);
int v_type = feedTypes_.get(name);
NdIndexIterator iter = new NdIndexIterator(flattened_list.shape());
if (v_type == 0) { // int64
while (iter.hasNext()) {
long[] next_index = iter.next();
long x = flattened_list.getLong(next_index);
tensor_builder.addInt64Data(x);
}
} else if (v_type == 1) { // float32
while (iter.hasNext()) {
long[] next_index = iter.next();
float x = flattened_list.getFloat(next_index);
tensor_builder.addFloatData(x);
}
} else if (v_type == 2) { // int32
while (iter.hasNext()) {
long[] next_index = iter.next();
// the interface of INDArray is strange:
// https://deeplearning4j.org/api/latest/org/nd4j/linalg/api/ndarray/INDArray.html
int[] int_next_index = new int[next_index.length];
for(int i = 0; i < next_index.length; i++) {
int_next_index[i] = (int)next_index[i];
}
int x = flattened_list.getInt(int_next_index);
tensor_builder.addIntData(x);
}
} else {
throw new IllegalArgumentException("error tensor value type.");
}
tensor_builder.addAllShape(feedShapes_.get(name));
inst_builder.addTensorArray(tensor_builder.build());
}
req_builder.addInsts(inst_builder.build());
}
return req_builder.build();
}
private Map<String, HashMap<String, INDArray>>
_unpackInferenceResponse(
InferenceResponse resp,
Iterable<String> fetch,
Boolean need_variant_tag) throws IllegalArgumentException {
return Client._staticUnpackInferenceResponse(
resp, fetch, fetchTypes_, lodTensorSet_, need_variant_tag);
}
private static Map<String, HashMap<String, INDArray>>
_staticUnpackInferenceResponse(
InferenceResponse resp,
Iterable<String> fetch,
Map<String, Integer> fetchTypes,
Set<String> lodTensorSet,
Boolean need_variant_tag) throws IllegalArgumentException {
if (resp.getErrCode() != 0) {
return null;
}
String tag = resp.getTag();
HashMap<String, HashMap<String, INDArray>> multi_result_map
= new HashMap<String, HashMap<String, INDArray>>();
for (ModelOutput model_result: resp.getOutputsList()) {
String engine_name = model_result.getEngineName();
FetchInst inst = model_result.getInsts(0);
HashMap<String, INDArray> result_map
= new HashMap<String, INDArray>();
int index = 0;
for (String name: fetch) {
Tensor variable = inst.getTensorArray(index);
int v_type = fetchTypes.get(name);
INDArray data = null;
if (v_type == 0) { // int64
List<Long> list = variable.getInt64DataList();
long[] array = new long[list.size()];
for (int i = 0; i < list.size(); i++) {
array[i] = list.get(i);
}
data = Nd4j.createFromArray(array);
} else if (v_type == 1) { // float32
List<Float> list = variable.getFloatDataList();
float[] array = new float[list.size()];
for (int i = 0; i < list.size(); i++) {
array[i] = list.get(i);
}
data = Nd4j.createFromArray(array);
} else if (v_type == 2) { // int32
List<Integer> list = variable.getIntDataList();
int[] array = new int[list.size()];
for (int i = 0; i < list.size(); i++) {
array[i] = list.get(i);
}
data = Nd4j.createFromArray(array);
} else {
throw new IllegalArgumentException("error tensor value type.");
}
// shape
List<Integer> shape_lsit = variable.getShapeList();
int[] shape_array = new int[shape_lsit.size()];
for (int i = 0; i < shape_lsit.size(); ++i) {
shape_array[i] = shape_lsit.get(i);
}
data = data.reshape(shape_array);
// put data to result_map
result_map.put(name, data);
// lod
if (lodTensorSet.contains(name)) {
List<Integer> list = variable.getLodList();
int[] array = new int[list.size()];
for (int i = 0; i < list.size(); i++) {
array[i] = list.get(i);
}
result_map.put(name + ".lod", Nd4j.createFromArray(array));
}
index += 1;
}
multi_result_map.put(engine_name, result_map);
}
// TODO: tag(ABtest not support now)
return multi_result_map;
}
public Map<String, INDArray> predict(
HashMap<String, INDArray> feed,
Iterable<String> fetch) {
return predict(feed, fetch, false);
}
public Map<String, HashMap<String, INDArray>> ensemble_predict(
HashMap<String, INDArray> feed,
Iterable<String> fetch) {
return ensemble_predict(feed, fetch, false);
}
public PredictFuture asyn_predict(
HashMap<String, INDArray> feed,
Iterable<String> fetch) {
return asyn_predict(feed, fetch, false);
}
public Map<String, INDArray> predict(
HashMap<String, INDArray> feed,
Iterable<String> fetch,
Boolean need_variant_tag) {
List<HashMap<String, INDArray>> feed_batch
= new ArrayList<HashMap<String, INDArray>>();
feed_batch.add(feed);
return predict(feed_batch, fetch, need_variant_tag);
}
public Map<String, HashMap<String, INDArray>> ensemble_predict(
HashMap<String, INDArray> feed,
Iterable<String> fetch,
Boolean need_variant_tag) {
List<HashMap<String, INDArray>> feed_batch
= new ArrayList<HashMap<String, INDArray>>();
feed_batch.add(feed);
return ensemble_predict(feed_batch, fetch, need_variant_tag);
}
public PredictFuture asyn_predict(
HashMap<String, INDArray> feed,
Iterable<String> fetch,
Boolean need_variant_tag) {
List<HashMap<String, INDArray>> feed_batch
= new ArrayList<HashMap<String, INDArray>>();
feed_batch.add(feed);
return asyn_predict(feed_batch, fetch, need_variant_tag);
}
public Map<String, INDArray> predict(
List<HashMap<String, INDArray>> feed_batch,
Iterable<String> fetch) {
return predict(feed_batch, fetch, false);
}
public Map<String, HashMap<String, INDArray>> ensemble_predict(
List<HashMap<String, INDArray>> feed_batch,
Iterable<String> fetch) {
return ensemble_predict(feed_batch, fetch, false);
}
public PredictFuture asyn_predict(
List<HashMap<String, INDArray>> feed_batch,
Iterable<String> fetch) {
return asyn_predict(feed_batch, fetch, false);
}
public Map<String, INDArray> predict(
List<HashMap<String, INDArray>> feed_batch,
Iterable<String> fetch,
Boolean need_variant_tag) {
try {
profiler_.record("java_prepro_0");
InferenceRequest req = _packInferenceRequest(feed_batch, fetch);
profiler_.record("java_prepro_1");
profiler_.record("java_client_infer_0");
InferenceResponse resp = blockingStub_.inference(req);
profiler_.record("java_client_infer_1");
profiler_.record("java_postpro_0");
Map<String, HashMap<String, INDArray>> ensemble_result
= _unpackInferenceResponse(resp, fetch, need_variant_tag);
List<Map.Entry<String, HashMap<String, INDArray>>> list
= new ArrayList<Map.Entry<String, HashMap<String, INDArray>>>(
ensemble_result.entrySet());
if (list.size() != 1) {
System.out.format("predict failed: please use ensemble_predict impl.\n");
return null;
}
profiler_.record("java_postpro_1");
profiler_.printProfile();
return list.get(0).getValue();
} catch (StatusRuntimeException e) {
System.out.format("predict failed: %s\n", e.toString());
return null;
}
}
public Map<String, HashMap<String, INDArray>> ensemble_predict(
List<HashMap<String, INDArray>> feed_batch,
Iterable<String> fetch,
Boolean need_variant_tag) {
try {
profiler_.record("java_prepro_0");
InferenceRequest req = _packInferenceRequest(feed_batch, fetch);
profiler_.record("java_prepro_1");
profiler_.record("java_client_infer_0");
InferenceResponse resp = blockingStub_.inference(req);
profiler_.record("java_client_infer_1");
profiler_.record("java_postpro_0");
Map<String, HashMap<String, INDArray>> ensemble_result
= _unpackInferenceResponse(resp, fetch, need_variant_tag);
profiler_.record("java_postpro_1");
profiler_.printProfile();
return ensemble_result;
} catch (StatusRuntimeException e) {
System.out.format("predict failed: %s\n", e.toString());
return null;
}
}
public PredictFuture asyn_predict(
List<HashMap<String, INDArray>> feed_batch,
Iterable<String> fetch,
Boolean need_variant_tag) {
InferenceRequest req = _packInferenceRequest(feed_batch, fetch);
ListenableFuture<InferenceResponse> future = futureStub_.inference(req);
PredictFuture predict_future = new PredictFuture(future,
(InferenceResponse resp) -> {
return Client._staticUnpackInferenceResponse(
resp, fetch, fetchTypes_, lodTensorSet_, need_variant_tag);
}
);
return predict_future;
}
}
package io.paddle.serving.client;
import java.util.*;
import java.util.function.Function;
import io.grpc.StatusRuntimeException;
import com.google.common.util.concurrent.ListenableFuture;
import org.nd4j.linalg.api.ndarray.INDArray;
import io.paddle.serving.client.Client;
import io.paddle.serving.grpc.*;
public class PredictFuture {
private ListenableFuture<InferenceResponse> callFuture_;
private Function<InferenceResponse,
Map<String, HashMap<String, INDArray>>> callBackFunc_;
PredictFuture(ListenableFuture<InferenceResponse> call_future,
Function<InferenceResponse,
Map<String, HashMap<String, INDArray>>> call_back_func) {
callFuture_ = call_future;
callBackFunc_ = call_back_func;
}
public Map<String, INDArray> get() {
InferenceResponse resp = null;
try {
resp = callFuture_.get();
} catch (Exception e) {
System.out.format("predict failed: %s\n", e.toString());
return null;
}
Map<String, HashMap<String, INDArray>> ensemble_result
= callBackFunc_.apply(resp);
List<Map.Entry<String, HashMap<String, INDArray>>> list
= new ArrayList<Map.Entry<String, HashMap<String, INDArray>>>(
ensemble_result.entrySet());
if (list.size() != 1) {
System.out.format("predict failed: please use get_ensemble impl.\n");
return null;
}
return list.get(0).getValue();
}
public Map<String, HashMap<String, INDArray>> ensemble_get() {
InferenceResponse resp = null;
try {
resp = callFuture_.get();
} catch (Exception e) {
System.out.format("predict failed: %s\n", e.toString());
return null;
}
return callBackFunc_.apply(resp);
}
}
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
syntax = "proto2";
option java_multiple_files = true;
option java_package = "io.paddle.serving.configure";
option java_outer_classname = "ConfigureProto";
package paddle.serving.configure;
message FeedVar {
optional string name = 1;
optional string alias_name = 2;
optional bool is_lod_tensor = 3 [ default = false ];
optional int32 feed_type = 4 [ default = 0 ];
repeated int32 shape = 5;
}
message FetchVar {
optional string name = 1;
optional string alias_name = 2;
optional bool is_lod_tensor = 3 [ default = false ];
optional int32 fetch_type = 4 [ default = 0 ];
repeated int32 shape = 5;
}
message GeneralModelConfig {
repeated FeedVar feed_var = 1;
repeated FetchVar fetch_var = 2;
};
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
syntax = "proto2";
option java_multiple_files = true;
option java_package = "io.paddle.serving.grpc";
option java_outer_classname = "ServingProto";
message Tensor {
optional bytes data = 1;
repeated int32 int_data = 2;
repeated int64 int64_data = 3;
repeated float float_data = 4;
optional int32 elem_type = 5;
repeated int32 shape = 6;
repeated int32 lod = 7; // only for fetch tensor currently
};
message FeedInst { repeated Tensor tensor_array = 1; };
message FetchInst { repeated Tensor tensor_array = 1; };
message InferenceRequest {
repeated FeedInst insts = 1;
repeated string feed_var_names = 2;
repeated string fetch_var_names = 3;
required bool is_python = 4 [ default = false ];
};
message InferenceResponse {
repeated ModelOutput outputs = 1;
optional string tag = 2;
required int32 err_code = 3;
};
message ModelOutput {
repeated FetchInst insts = 1;
optional string engine_name = 2;
}
message SetTimeoutRequest { required int32 timeout_ms = 1; }
message SimpleResponse { required int32 err_code = 1; }
message GetClientConfigRequest {}
message GetClientConfigResponse { required string client_config_str = 1; }
service MultiLangGeneralModelService {
rpc Inference(InferenceRequest) returns (InferenceResponse) {}
rpc SetTimeout(SetTimeoutRequest) returns (SimpleResponse) {}
rpc GetClientConfig(GetClientConfigRequest)
returns (GetClientConfigResponse) {}
};
<?xml version="1.0" encoding="UTF-8"?>
<Configuration status="INFO">
<Appenders>
<Console name="Console" target="SYSTEM_OUT">
<PatternLayout pattern="%highlight{%d{yyyy-MM-dd HH:mm:ss} %C %M %n%p: %m%n}{STYLE=Logback}"/>
</Console>
</Appenders>
<Loggers>
<Root level="INFO">
<AppenderRef ref="Console"/>
</Root>
</Loggers>
</Configuration>
if (CLIENT)
file(INSTALL pipeline DESTINATION paddle_serving_client)
execute_process(COMMAND ${PYTHON_EXECUTABLE} run_codegen.py
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/paddle_serving_client/pipeline/proto)
file(GLOB_RECURSE SERVING_CLIENT_PY_FILES paddle_serving_client/*.py)
set(PY_FILES ${SERVING_CLIENT_PY_FILES})
SET(PACKAGE_NAME "serving_client")
......@@ -7,8 +10,14 @@ endif()
if (SERVER)
if (NOT WITH_GPU)
file(INSTALL pipeline DESTINATION paddle_serving_server)
execute_process(COMMAND ${PYTHON_EXECUTABLE} run_codegen.py
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/paddle_serving_server/pipeline/proto)
file(GLOB_RECURSE SERVING_SERVER_PY_FILES paddle_serving_server/*.py)
else()
file(INSTALL pipeline DESTINATION paddle_serving_server_gpu)
execute_process(COMMAND ${PYTHON_EXECUTABLE} run_codegen.py
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/paddle_serving_server_gpu/pipeline/proto)
file(GLOB_RECURSE SERVING_SERVER_PY_FILES paddle_serving_server_gpu/*.py)
endif()
set(PY_FILES ${SERVING_SERVER_PY_FILES})
......
......@@ -116,8 +116,10 @@ def single_func(idx, resource):
if __name__ == '__main__':
multi_thread_runner = MultiThreadRunner()
endpoint_list = ["127.0.0.1:9292"]
turns = 10
endpoint_list = [
"127.0.0.1:9292", "127.0.0.1:9293", "127.0.0.1:9294", "127.0.0.1:9295"
]
turns = 100
start = time.time()
result = multi_thread_runner.run(
single_func, args.thread, {"endpoint": endpoint_list,
......@@ -130,9 +132,9 @@ if __name__ == '__main__':
avg_cost += result[0][i]
avg_cost = avg_cost / args.thread
print("total cost :{} s".format(total_cost))
print("each thread cost :{} s. ".format(avg_cost))
print("qps :{} samples/s".format(args.batch_size * args.thread * turns /
total_cost))
print("total cost: {}s".format(total_cost))
print("each thread cost: {}s. ".format(avg_cost))
print("qps: {}samples/s".format(args.batch_size * args.thread * turns /
total_cost))
if os.getenv("FLAGS_serving_latency"):
show_latency(result[1])
rm profile_log
rm profile_log*
export CUDA_VISIBLE_DEVICES=0,1,2,3
export FLAGS_profile_server=1
export FLAGS_profile_client=1
export FLAGS_serving_latency=1
python3 -m paddle_serving_server_gpu.serve --model $1 --port 9292 --thread 4 --gpu_ids 0,1,2,3 --mem_optim False --ir_optim True 2> elog > stdlog &
gpu_id=0
#save cpu and gpu utilization log
if [ -d utilization ];then
rm -rf utilization
else
mkdir utilization
fi
#start server
$PYTHONROOT/bin/python3 -m paddle_serving_server_gpu.serve --model $1 --port 9292 --thread 4 --gpu_ids 0,1,2,3 --mem_optim --ir_optim > elog 2>&1 &
sleep 5
#warm up
python3 benchmark.py --thread 8 --batch_size 1 --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1
for thread_num in 4 8 16
$PYTHONROOT/bin/python3 benchmark.py --thread 4 --batch_size 1 --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1
echo -e "import psutil\ncpu_utilization=psutil.cpu_percent(1,False)\nprint('CPU_UTILIZATION:', cpu_utilization)\n" > cpu_utilization.py
for thread_num in 1 4 8 16
do
for batch_size in 1 4 16 64 256
for batch_size in 1 4 16 64
do
python3 benchmark.py --thread $thread_num --batch_size $batch_size --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1
echo "model name :" $1
echo "thread num :" $thread_num
echo "batch size :" $batch_size
job_bt=`date '+%Y%m%d%H%M%S'`
nvidia-smi --id=0 --query-compute-apps=used_memory --format=csv -lms 100 > gpu_use.log 2>&1 &
nvidia-smi --id=0 --query-gpu=utilization.gpu --format=csv -lms 100 > gpu_utilization.log 2>&1 &
gpu_memory_pid=$!
$PYTHONROOT/bin/python3 benchmark.py --thread $thread_num --batch_size $batch_size --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1
kill ${gpu_memory_pid}
kill `ps -ef|grep used_memory|awk '{print $2}'`
echo "model_name:" $1
echo "thread_num:" $thread_num
echo "batch_size:" $batch_size
echo "=================Done===================="
echo "model name :$1" >> profile_log_$1
echo "batch size :$batch_size" >> profile_log_$1
python3 ../util/show_profile.py profile $thread_num >> profile_log_$1
echo "model_name:$1" >> profile_log_$1
echo "batch_size:$batch_size" >> profile_log_$1
$PYTHONROOT/bin/python3 cpu_utilization.py >> profile_log_$1
job_et=`date '+%Y%m%d%H%M%S'`
awk 'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "MAX_GPU_MEMORY:", max}' gpu_use.log >> profile_log_$1
awk 'BEGIN {max = 0} {if(NR>1){if ($1 > max) max=$1}} END {print "GPU_UTILIZATION:", max}' gpu_utilization.log >> profile_log_$1
rm -rf gpu_use.log gpu_utilization.log
$PYTHONROOT/bin/python3 ../util/show_profile.py profile $thread_num >> profile_log_$1
tail -n 8 profile >> profile_log_$1
echo "" >> profile_log_$1
done
done
#Divided log
awk 'BEGIN{RS="\n\n"}{i++}{print > "bert_log_"i}' profile_log_$1
mkdir bert_log && mv bert_log_* bert_log
ps -ef|grep 'serving'|grep -v grep|cut -c 9-15 | xargs kill -9
# Blazeface
## Get Model
```
python -m paddle_serving_app.package --get_model blazeface
tar -xzvf blazeface.tar.gz
```
## RPC Service
### Start Service
```
python -m paddle_serving_server.serve --model serving_server --port 9494
```
### Client Prediction
```
python test_client.py serving_client/serving_client_conf.prototxt test.jpg
```
the result is in `output` folder, including a json file and image file with bounding boxes.
......@@ -13,19 +13,26 @@
# limitations under the License.
from paddle_serving_client import Client
from paddle_serving_app.reader import OCRReader
import cv2
from paddle_serving_app.reader import *
import sys
import numpy as np
preprocess = Sequential([
File2Image(),
Normalize([104, 117, 123], [127.502231, 127.502231, 127.502231], False)
])
postprocess = BlazeFacePostprocess("label_list.txt", "output")
client = Client()
client.load_client_config("ocr_rec_client/serving_client_conf.prototxt")
client.connect(["127.0.0.1:9292"])
image_file_list = ["./test_rec.jpg"]
img = cv2.imread(image_file_list[0])
ocr_reader = OCRReader()
feed = {"image": ocr_reader.preprocess([img])}
fetch = ["ctc_greedy_decoder_0.tmp_0", "softmax_0.tmp_0"]
fetch_map = client.predict(feed=feed, fetch=fetch)
rec_res = ocr_reader.postprocess(fetch_map)
print(image_file_list[0])
print(rec_res[0][0])
client.load_client_config(sys.argv[1])
client.connect(['127.0.0.1:9494'])
im_0 = preprocess(sys.argv[2])
tmp = Transpose((2, 0, 1))
im = tmp(im_0)
fetch_map = client.predict(
feed={"image": im}, fetch=["detection_output_0.tmp_0"])
fetch_map["image"] = sys.argv[2]
fetch_map["im_shape"] = im_0.shape
postprocess(fetch_map)
......@@ -27,7 +27,7 @@ mv cube_app/cube* ./cube/
sh cube_prepare.sh &
```
Here, the sparse parameter is loaded by cube sparse parameter indexing service Cube,for more details please read [Cube: Sparse Parameter Indexing Service (Local Mode)](../../../doc/CUBE_LOCAL.md)
Here, the sparse parameter is loaded by cube sparse parameter indexing service Cube.
### Start RPC Predictor, the number of serving thread is 4(configurable in test_server.py)
......@@ -45,7 +45,7 @@ python test_client.py ctr_client_conf/serving_client_conf.prototxt ./raw_data
CPU :Intel(R) Xeon(R) CPU 6148 @ 2.40GHz
Model :[Criteo CTR](https://github.com/PaddlePaddle/Serving/blob/develop/python/examples/ctr_criteo_with_cube/network_conf.py)
Model :[Criteo CTR](https://github.com/PaddlePaddle/Serving/blob/develop/python/examples/criteo_ctr_with_cube/network_conf.py)
server core/thread num : 4/8
......
......@@ -25,7 +25,7 @@ mv cube_app/cube* ./cube/
sh cube_prepare.sh &
```
此处,模型当中的稀疏参数会被存放在稀疏参数索引服务Cube当中,关于稀疏参数索引服务Cube的介绍,请阅读[稀疏参数索引服务Cube单机版使用指南](../../../doc/CUBE_LOCAL_CN.md)
此处,模型当中的稀疏参数会被存放在稀疏参数索引服务Cube当中
### 启动RPC预测服务,服务端线程数为4(可在test_server.py配置)
......@@ -43,7 +43,7 @@ python test_client.py ctr_client_conf/serving_client_conf.prototxt ./raw_data
设备 :Intel(R) Xeon(R) CPU 6148 @ 2.40GHz
模型 :[Criteo CTR](https://github.com/PaddlePaddle/Serving/blob/develop/python/examples/ctr_criteo_with_cube/network_conf.py)
模型 :[Criteo CTR](https://github.com/PaddlePaddle/Serving/blob/develop/python/examples/criteo_ctr_with_cube/network_conf.py)
server core/thread num : 4/8
......
......@@ -24,11 +24,13 @@ from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args
from paddle_serving_client.metric import auc
py_version = sys.version_info[0]
args = benchmark_args()
def single_func(idx, resource):
client = Client()
print([resource["endpoint"][idx % len(resource["endpoint"])]])
client.load_client_config('ctr_client_conf/serving_client_conf.prototxt')
client.connect(['127.0.0.1:9292'])
batch = 1
......@@ -40,27 +42,32 @@ def single_func(idx, resource):
]
reader = dataset.infer_reader(test_filelists[len(test_filelists) - 40:],
batch, buf_size)
args.batch_size = 1
if args.request == "rpc":
fetch = ["prob"]
print("Start Time")
start = time.time()
itr = 1000
for ei in range(itr):
if args.batch_size == 1:
data = reader().next()
feed_dict = {}
feed_dict['dense_input'] = data[0][0]
for i in range(1, 27):
feed_dict["embedding_{}.tmp_0".format(i - 1)] = data[0][i]
result = client.predict(feed=feed_dict, fetch=fetch)
if args.batch_size > 0:
feed_batch = []
for bi in range(args.batch_size):
if py_version == 2:
data = reader().next()
else:
data = reader().__next__()
feed_dict = {}
feed_dict['dense_input'] = data[0][0]
for i in range(1, 27):
feed_dict["embedding_{}.tmp_0".format(i - 1)] = data[0][
i]
feed_batch.append(feed_dict)
result = client.predict(feed=feed_batch, fetch=fetch)
else:
print("unsupport batch size {}".format(args.batch_size))
elif args.request == "http":
raise ("Not support http service.")
end = time.time()
qps = itr / (end - start)
qps = itr * args.batch_size / (end - start)
return [[end - start, qps]]
......@@ -68,13 +75,17 @@ if __name__ == '__main__':
multi_thread_runner = MultiThreadRunner()
endpoint_list = ["127.0.0.1:9292"]
#result = single_func(0, {"endpoint": endpoint_list})
start = time.time()
result = multi_thread_runner.run(single_func, args.thread,
{"endpoint": endpoint_list})
end = time.time()
total_cost = end - start
avg_cost = 0
qps = 0
for i in range(args.thread):
avg_cost += result[0][i * 2 + 0]
qps += result[0][i * 2 + 1]
avg_cost = avg_cost / args.thread
print("total cost: {}".format(total_cost))
print("average total cost {} s.".format(avg_cost))
print("qps {} ins/s".format(qps))
rm profile_log
batch_size=1
for thread_num in 1 2 4 8 16
export FLAGS_profile_client=1
export FLAGS_profile_server=1
wget https://paddle-serving.bj.bcebos.com/unittest/ctr_cube_unittest.tar.gz --no-check-certificate
tar xf ctr_cube_unittest.tar.gz
mv models/ctr_client_conf ./
mv models/ctr_serving_model_kv ./
mv models/data ./cube/
wget https://paddle-serving.bj.bcebos.com/others/cube_app.tar.gz --no-check-certificate
tar xf cube_app.tar.gz
mv cube_app/cube* ./cube/
sh cube_prepare.sh &
python test_server.py ctr_serving_model_kv > serving_log 2>&1 &
for thread_num in 1 4 16
do
$PYTHONROOT/bin/python benchmark.py --thread $thread_num --model ctr_client_conf/serving_client_conf.prototxt --request rpc > profile 2>&1
for batch_size in 1 4 16 64
do
$PYTHONROOT/bin/python benchmark.py --thread $thread_num --batch_size $batch_size --model serving_client_conf/serving_client_conf.prototxt --request rpc > profile 2>&1
echo "batch size : $batch_size"
echo "thread num : $thread_num"
echo "========================================"
echo "batch size : $batch_size" >> profile_log
$PYTHONROOT/bin/python ../util/show_profile.py profile $thread_num >> profile_log
tail -n 2 profile >> profile_log
tail -n 3 profile >> profile_log
done
done
ps -ef|grep 'serving'|grep -v grep|cut -c 9-15 | xargs kill -9
# -*- coding: utf-8 -*-
#
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_client import Client
import sys
import os
import criteo as criteo
import time
from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args
from paddle_serving_client.metric import auc
args = benchmark_args()
def single_func(idx, resource):
client = Client()
print([resource["endpoint"][idx % len(resource["endpoint"])]])
client.load_client_config('ctr_client_conf/serving_client_conf.prototxt')
client.connect(['127.0.0.1:9292'])
batch = 1
buf_size = 100
dataset = criteo.CriteoDataset()
dataset.setup(1000001)
test_filelists = [
"./raw_data/part-%d" % x for x in range(len(os.listdir("./raw_data")))
]
reader = dataset.infer_reader(test_filelists[len(test_filelists) - 40:],
batch, buf_size)
if args.request == "rpc":
fetch = ["prob"]
start = time.time()
itr = 1000
for ei in range(itr):
if args.batch_size > 1:
feed_batch = []
for bi in range(args.batch_size):
data = reader().next()
feed_dict = {}
feed_dict['dense_input'] = data[0][0]
for i in range(1, 27):
feed_dict["embedding_{}.tmp_0".format(i - 1)] = data[0][
i]
feed_batch.append(feed_dict)
result = client.predict(feed=feed_batch, fetch=fetch)
else:
print("unsupport batch size {}".format(args.batch_size))
elif args.request == "http":
raise ("Not support http service.")
end = time.time()
qps = itr * args.batch_size / (end - start)
return [[end - start, qps]]
if __name__ == '__main__':
multi_thread_runner = MultiThreadRunner()
endpoint_list = ["127.0.0.1:9292"]
#result = single_func(0, {"endpoint": endpoint_list})
result = multi_thread_runner.run(single_func, args.thread,
{"endpoint": endpoint_list})
print(result)
avg_cost = 0
qps = 0
for i in range(args.thread):
avg_cost += result[0][i * 2 + 0]
qps += result[0][i * 2 + 1]
avg_cost = avg_cost / args.thread
print("average total cost {} s.".format(avg_cost))
print("qps {} ins/s".format(qps))
rm profile_log
for thread_num in 1 2 4 8 16
do
for batch_size in 1 2 4 8 16 32 64 128 256 512
do
$PYTHONROOT/bin/python benchmark_batch.py --thread $thread_num --batch_size $batch_size --model serving_client_conf/serving_client_conf.prototxt --request rpc > profile 2>&1
echo "========================================"
echo "batch size : $batch_size" >> profile_log
$PYTHONROOT/bin/python ../util/show_profile.py profile $thread_num >> profile_log
tail -n 2 profile >> profile_log
done
done
rm profile_log
#wget https://paddle-serving.bj.bcebos.com/unittest/ctr_cube_unittest.tar.gz --no-check-certificate
#tar xf ctr_cube_unittest.tar.gz
mv models/ctr_client_conf ./
mv models/ctr_serving_model_kv ./
mv models/data ./cube/
#wget https://paddle-serving.bj.bcebos.com/others/cube_app.tar.gz --no-check-certificate
#tar xf cube_app.tar.gz
mv cube_app/cube* ./cube/
sh cube_prepare.sh &
cp ../../../build_server/core/cube/cube-api/cube-cli .
python gen_key.py
for thread_num in 1 4 16 32
do
for batch_size in 1000
do
./cube-cli -config_file ./cube/conf/cube.conf -keys key -dict test_dict -thread_num $thread_num --batch $batch_size > profile 2>&1
echo "batch size : $batch_size"
echo "thread num : $thread_num"
echo "========================================"
echo "batch size : $batch_size" >> profile_log
echo "thread num : $thread_num" >> profile_log
tail -n 8 profile >> profile_log
done
done
ps -ef|grep 'cube'|grep -v grep|cut -c 9-15 | xargs kill -9
......@@ -16,7 +16,5 @@
mkdir -p cube_model
mkdir -p cube/data
./seq_generator ctr_serving_model/SparseFeatFactors ./cube_model/feature
./cube/cube-builder -dict_name=test_dict -job_mode=base -last_version=0 -cur_version=0 -depend_version=0 -input_path=./cube_model -output_path=${PWD}/cube/data -shard_num=1 -only_build=false
mv ./cube/data/0_0/test_dict_part0/* ./cube/data/
cd cube && ./cube
cd cube && ./cube
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import random
with open("key", "w") as f:
for i in range(1000000):
f.write("{}\n".format(random.randint(0, 999999)))
......@@ -20,6 +20,8 @@ import criteo as criteo
import time
from paddle_serving_client.metric import auc
py_version = sys.version_info[0]
client = Client()
client.load_client_config(sys.argv[1])
client.connect(["127.0.0.1:9292"])
......@@ -34,7 +36,10 @@ label_list = []
prob_list = []
start = time.time()
for ei in range(10000):
data = reader().next()
if py_version == 2:
data = reader().next()
else:
data = reader().__next__()
feed_dict = {}
feed_dict['dense_input'] = data[0][0]
for i in range(1, 27):
......
......@@ -33,5 +33,9 @@ server = Server()
server.set_op_sequence(op_seq_maker.get_op_sequence())
server.set_num_threads(4)
server.load_model_config(sys.argv[1])
server.prepare_server(workdir="work_dir1", port=9292, device="cpu")
server.prepare_server(
workdir="work_dir1",
port=9292,
device="cpu",
cube_conf="./cube/conf/cube.conf")
server.run_server()
......@@ -33,5 +33,9 @@ server = Server()
server.set_op_sequence(op_seq_maker.get_op_sequence())
server.set_num_threads(4)
server.load_model_config(sys.argv[1])
server.prepare_server(workdir="work_dir1", port=9292, device="cpu")
server.prepare_server(
workdir="work_dir1",
port=9292,
device="cpu",
cube_conf="./cube/conf/cube.conf")
server.run_server()
......@@ -33,5 +33,9 @@ server = Server()
server.set_op_sequence(op_seq_maker.get_op_sequence())
server.set_num_threads(4)
server.load_model_config(sys.argv[1])
server.prepare_server(workdir="work_dir1", port=9292, device="cpu")
server.prepare_server(
workdir="work_dir1",
port=9292,
device="cpu",
cube_conf="./cube/conf/cube.conf")
server.run_server()
## 带稀疏参数索引服务的CTR预测服务
该样例是为了展示gRPC Server 端 `load_model_config` 函数,在这个例子中,bRPC Server 端与 bRPC Client 端的配置文件是不同的(bPRC Client 端的数据先交给 cube,经过 cube 处理后再交给预测库)
### 获取样例数据
```
sh get_data.sh
```
### 下载模型和稀疏参数序列文件
```
wget https://paddle-serving.bj.bcebos.com/unittest/ctr_cube_unittest.tar.gz
tar xf ctr_cube_unittest.tar.gz
mv models/ctr_client_conf ./
mv models/ctr_serving_model_kv ./
mv models/data ./cube/
```
执行脚本后会在当前目录有ctr_server_model_kv和ctr_client_config文件夹。
### 启动稀疏参数索引服务
```
wget https://paddle-serving.bj.bcebos.com/others/cube_app.tar.gz
tar xf cube_app.tar.gz
mv cube_app/cube* ./cube/
sh cube_prepare.sh &
```
此处,模型当中的稀疏参数会被存放在稀疏参数索引服务Cube当中,关于稀疏参数索引服务Cube的介绍,请阅读[稀疏参数索引服务Cube单机版使用指南](../../../doc/CUBE_LOCAL_CN.md)
### 启动RPC预测服务,服务端线程数为4(可在test_server.py配置)
```
python test_server.py ctr_serving_model_kv ctr_client_conf/serving_client_conf.prototxt
```
### 执行预测
```
python test_client.py ./raw_data
```
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import argparse
def parse_args():
parser = argparse.ArgumentParser(description="PaddlePaddle CTR example")
parser.add_argument(
'--train_data_path',
type=str,
default='./data/raw/train.txt',
help="The path of training dataset")
parser.add_argument(
'--sparse_only',
type=bool,
default=False,
help="Whether we use sparse features only")
parser.add_argument(
'--test_data_path',
type=str,
default='./data/raw/valid.txt',
help="The path of testing dataset")
parser.add_argument(
'--batch_size',
type=int,
default=1000,
help="The size of mini-batch (default:1000)")
parser.add_argument(
'--embedding_size',
type=int,
default=10,
help="The size for embedding layer (default:10)")
parser.add_argument(
'--num_passes',
type=int,
default=10,
help="The number of passes to train (default: 10)")
parser.add_argument(
'--model_output_dir',
type=str,
default='models',
help='The path for model to store (default: models)')
parser.add_argument(
'--sparse_feature_dim',
type=int,
default=1000001,
help='sparse feature hashing space for index processing')
parser.add_argument(
'--is_local',
type=int,
default=1,
help='Local train or distributed train (default: 1)')
parser.add_argument(
'--cloud_train',
type=int,
default=0,
help='Local train or distributed train on paddlecloud (default: 0)')
parser.add_argument(
'--async_mode',
action='store_true',
default=False,
help='Whether start pserver in async mode to support ASGD')
parser.add_argument(
'--no_split_var',
action='store_true',
default=False,
help='Whether split variables into blocks when update_method is pserver')
parser.add_argument(
'--role',
type=str,
default='pserver', # trainer or pserver
help='The path for model to store (default: models)')
parser.add_argument(
'--endpoints',
type=str,
default='127.0.0.1:6000',
help='The pserver endpoints, like: 127.0.0.1:6000,127.0.0.1:6001')
parser.add_argument(
'--current_endpoint',
type=str,
default='127.0.0.1:6000',
help='The path for model to store (default: 127.0.0.1:6000)')
parser.add_argument(
'--trainer_id',
type=int,
default=0,
help='The path for model to store (default: models)')
parser.add_argument(
'--trainers',
type=int,
default=1,
help='The num of trianers, (default: 1)')
return parser.parse_args()
ps -ef | grep cube | awk {'print $2'} | xargs kill -9
rm -rf cube/cube_data cube/data cube/log* cube/nohup* cube/output/ cube/donefile cube/input cube/monitor cube/cube-builder.INFO
ps -ef | grep test | awk {'print $2'} | xargs kill -9
ps -ef | grep serving | awk {'print $2'} | xargs kill -9
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
class CriteoDataset(object):
def setup(self, sparse_feature_dim):
self.cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
self.cont_max_ = [
20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50
]
self.cont_diff_ = [
20, 603, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50
]
self.hash_dim_ = sparse_feature_dim
# here, training data are lines with line_index < train_idx_
self.train_idx_ = 41256555
self.continuous_range_ = range(1, 14)
self.categorical_range_ = range(14, 40)
def _process_line(self, line):
features = line.rstrip('\n').split('\t')
dense_feature = []
sparse_feature = []
for idx in self.continuous_range_:
if features[idx] == '':
dense_feature.append(0.0)
else:
dense_feature.append((float(features[idx]) - self.cont_min_[idx - 1]) / \
self.cont_diff_[idx - 1])
for idx in self.categorical_range_:
sparse_feature.append(
[hash(str(idx) + features[idx]) % self.hash_dim_])
return dense_feature, sparse_feature, [int(features[0])]
def infer_reader(self, filelist, batch, buf_size):
def local_iter():
for fname in filelist:
with open(fname.strip(), "r") as fin:
for line in fin:
dense_feature, sparse_feature, label = self._process_line(
line)
#yield dense_feature, sparse_feature, label
yield [dense_feature] + sparse_feature + [label]
import paddle
batch_iter = paddle.batch(
paddle.reader.shuffle(
local_iter, buf_size=buf_size),
batch_size=batch)
return batch_iter
def generate_sample(self, line):
def data_iter():
dense_feature, sparse_feature, label = self._process_line(line)
feature_name = ["dense_input"]
for idx in self.categorical_range_:
feature_name.append("C" + str(idx - 13))
feature_name.append("label")
yield zip(feature_name, [dense_feature] + sparse_feature + [label])
return data_iter
if __name__ == "__main__":
criteo_dataset = CriteoDataset()
criteo_dataset.setup(int(sys.argv[1]))
criteo_dataset.run_from_stdin()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import sys
import paddle.fluid.incubate.data_generator as dg
class CriteoDataset(dg.MultiSlotDataGenerator):
def setup(self, sparse_feature_dim):
self.cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
self.cont_max_ = [
20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50
]
self.cont_diff_ = [
20, 603, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50
]
self.hash_dim_ = sparse_feature_dim
# here, training data are lines with line_index < train_idx_
self.train_idx_ = 41256555
self.continuous_range_ = range(1, 14)
self.categorical_range_ = range(14, 40)
def _process_line(self, line):
features = line.rstrip('\n').split('\t')
dense_feature = []
sparse_feature = []
for idx in self.continuous_range_:
if features[idx] == '':
dense_feature.append(0.0)
else:
dense_feature.append((float(features[idx]) - self.cont_min_[idx - 1]) / \
self.cont_diff_[idx - 1])
for idx in self.categorical_range_:
sparse_feature.append(
[hash(str(idx) + features[idx]) % self.hash_dim_])
return dense_feature, sparse_feature, [int(features[0])]
def infer_reader(self, filelist, batch, buf_size):
def local_iter():
for fname in filelist:
with open(fname.strip(), "r") as fin:
for line in fin:
dense_feature, sparse_feature, label = self._process_line(
line)
#yield dense_feature, sparse_feature, label
yield [dense_feature] + sparse_feature + [label]
import paddle
batch_iter = paddle.batch(
paddle.reader.shuffle(
local_iter, buf_size=buf_size),
batch_size=batch)
return batch_iter
def generate_sample(self, line):
def data_iter():
dense_feature, sparse_feature, label = self._process_line(line)
feature_name = ["dense_input"]
for idx in self.categorical_range_:
feature_name.append("C" + str(idx - 13))
feature_name.append("label")
yield zip(feature_name, [dense_feature] + sparse_feature + [label])
return data_iter
if __name__ == "__main__":
criteo_dataset = CriteoDataset()
criteo_dataset.setup(int(sys.argv[1]))
criteo_dataset.run_from_stdin()
[{
"dict_name": "test_dict",
"shard": 1,
"dup": 1,
"timeout": 200,
"retry": 3,
"backup_request": 100,
"type": "ipport_list",
"load_balancer": "rr",
"nodes": [{
"ipport_list": "list://127.0.0.1:8027"
}]
}]
--port=8027
--dict_split=1
--in_mem=true
--log_dir=./log/
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
#! /bin/bash
mkdir -p cube_model
mkdir -p cube/data
./seq_generator ctr_serving_model/SparseFeatFactors ./cube_model/feature
./cube/cube-builder -dict_name=test_dict -job_mode=base -last_version=0 -cur_version=0 -depend_version=0 -input_path=./cube_model -output_path=${PWD}/cube/data -shard_num=1 -only_build=false
mv ./cube/data/0_0/test_dict_part0/* ./cube/data/
cd cube && ./cube
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
#! /bin/bash
mkdir -p cube_model
mkdir -p cube/data
./seq_generator ctr_serving_model/SparseFeatFactors ./cube_model/feature 8
./cube/cube-builder -dict_name=test_dict -job_mode=base -last_version=0 -cur_version=0 -depend_version=0 -input_path=./cube_model -output_path=${PWD}/cube/data -shard_num=1 -only_build=false
mv ./cube/data/0_0/test_dict_part0/* ./cube/data/
cd cube && ./cube
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/data/ctr_prediction/ctr_data.tar.gz
tar -zxvf ctr_data.tar.gz
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from __future__ import print_function
from args import parse_args
import os
import paddle.fluid as fluid
import sys
from network_conf import dnn_model
dense_feature_dim = 13
def train():
args = parse_args()
sparse_only = args.sparse_only
if not os.path.isdir(args.model_output_dir):
os.mkdir(args.model_output_dir)
dense_input = fluid.layers.data(
name="dense_input", shape=[dense_feature_dim], dtype='float32')
sparse_input_ids = [
fluid.layers.data(
name="C" + str(i), shape=[1], lod_level=1, dtype="int64")
for i in range(1, 27)
]
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
#nn_input = None if sparse_only else dense_input
nn_input = dense_input
predict_y, loss, auc_var, batch_auc_var, infer_vars = dnn_model(
nn_input, sparse_input_ids, label, args.embedding_size,
args.sparse_feature_dim)
optimizer = fluid.optimizer.SGD(learning_rate=1e-4)
optimizer.minimize(loss)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
dataset.set_use_var([dense_input] + sparse_input_ids + [label])
python_executable = "python"
pipe_command = "{} criteo_reader.py {}".format(python_executable,
args.sparse_feature_dim)
dataset.set_pipe_command(pipe_command)
dataset.set_batch_size(128)
thread_num = 10
dataset.set_thread(thread_num)
whole_filelist = [
"raw_data/part-%d" % x for x in range(len(os.listdir("raw_data")))
]
print(whole_filelist)
dataset.set_filelist(whole_filelist[:100])
dataset.load_into_memory()
fluid.layers.Print(auc_var)
epochs = 1
for i in range(epochs):
exe.train_from_dataset(
program=fluid.default_main_program(), dataset=dataset, debug=True)
print("epoch {} finished".format(i))
import paddle_serving_client.io as server_io
feed_var_dict = {}
feed_var_dict['dense_input'] = dense_input
for i, sparse in enumerate(sparse_input_ids):
feed_var_dict["embedding_{}.tmp_0".format(i)] = sparse
fetch_var_dict = {"prob": predict_y}
feed_kv_dict = {}
feed_kv_dict['dense_input'] = dense_input
for i, emb in enumerate(infer_vars):
feed_kv_dict["embedding_{}.tmp_0".format(i)] = emb
fetch_var_dict = {"prob": predict_y}
server_io.save_model("ctr_serving_model", "ctr_client_conf", feed_var_dict,
fetch_var_dict, fluid.default_main_program())
server_io.save_model("ctr_serving_model_kv", "ctr_client_conf_kv",
feed_kv_dict, fetch_var_dict,
fluid.default_main_program())
if __name__ == '__main__':
train()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import paddle.fluid as fluid
import math
def dnn_model(dense_input, sparse_inputs, label, embedding_size,
sparse_feature_dim):
def embedding_layer(input):
emb = fluid.layers.embedding(
input=input,
is_sparse=True,
is_distributed=False,
size=[sparse_feature_dim, embedding_size],
param_attr=fluid.ParamAttr(
name="SparseFeatFactors",
initializer=fluid.initializer.Uniform()))
x = fluid.layers.sequence_pool(input=emb, pool_type='sum')
return emb, x
def mlp_input_tensor(emb_sums, dense_tensor):
#if isinstance(dense_tensor, fluid.Variable):
# return fluid.layers.concat(emb_sums, axis=1)
#else:
return fluid.layers.concat(emb_sums + [dense_tensor], axis=1)
def mlp(mlp_input):
fc1 = fluid.layers.fc(input=mlp_input,
size=400,
act='relu',
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Normal(
scale=1 / math.sqrt(mlp_input.shape[1]))))
fc2 = fluid.layers.fc(input=fc1,
size=400,
act='relu',
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Normal(
scale=1 / math.sqrt(fc1.shape[1]))))
fc3 = fluid.layers.fc(input=fc2,
size=400,
act='relu',
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Normal(
scale=1 / math.sqrt(fc2.shape[1]))))
pre = fluid.layers.fc(input=fc3,
size=2,
act='softmax',
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Normal(
scale=1 / math.sqrt(fc3.shape[1]))))
return pre
emb_pair_sums = list(map(embedding_layer, sparse_inputs))
emb_sums = [x[1] for x in emb_pair_sums]
infer_vars = [x[0] for x in emb_pair_sums]
mlp_in = mlp_input_tensor(emb_sums, dense_input)
predict = mlp(mlp_in)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.reduce_sum(cost)
accuracy = fluid.layers.accuracy(input=predict, label=label)
auc_var, batch_auc_var, auc_states = \
fluid.layers.auc(input=predict, label=label, num_thresholds=2 ** 12, slide_steps=20)
return predict, avg_cost, auc_var, batch_auc_var, infer_vars
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_client import MultiLangClient as Client
import sys
import os
import criteo as criteo
import time
from paddle_serving_client.metric import auc
import grpc
client = Client()
client.connect(["127.0.0.1:9292"])
batch = 1
buf_size = 100
dataset = criteo.CriteoDataset()
dataset.setup(1000001)
test_filelists = ["{}/part-0".format(sys.argv[1])]
reader = dataset.infer_reader(test_filelists, batch, buf_size)
label_list = []
prob_list = []
start = time.time()
for ei in range(10000):
data = reader().next()
feed_dict = {}
feed_dict['dense_input'] = data[0][0]
for i in range(1, 27):
feed_dict["embedding_{}.tmp_0".format(i - 1)] = data[0][i]
fetch_map = client.predict(feed=feed_dict, fetch=["prob"])
if fetch_map["serving_status_code"] == 0:
prob_list.append(fetch_map['prob'][0][1])
label_list.append(data[0][-1][0])
print(auc(label_list, prob_list))
end = time.time()
print(end - start)
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/uci_housing.tar.gz
tar -xzf uci_housing.tar.gz
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册