提交 588d72ae 编写于 作者: M MRXLT

Merge remote-tracking branch 'upstream/develop' into 0.2.2-web-service

sync
......@@ -78,12 +78,18 @@ class ModelRes {
std::vector<float>&& get_float_by_name_with_rv(const std::string& name) {
return std::move(_float_value_map[name]);
}
const std::vector<int>& get_shape(const std::string& name) {
const std::vector<int>& get_shape_by_name(const std::string& name) {
return _shape_map[name];
}
const std::vector<int>& get_lod(const std::string& name) {
std::vector<int>&& get_shape_by_name_with_rv(const std::string& name) {
return std::move(_shape_map[name]);
}
const std::vector<int>& get_lod_by_name(const std::string& name) {
return _lod_map[name];
}
std::vector<int>&& get_lod_by_name_with_rv(const std::string& name) {
return std::move(_lod_map[name]);
}
void set_engine_name(const std::string& engine_name) {
_engine_name = engine_name;
}
......@@ -139,13 +145,21 @@ class PredictorRes {
const std::string& name) {
return std::move(_models[model_idx].get_float_by_name_with_rv(name));
}
const std::vector<int>& get_shape(const int model_idx,
const std::string& name) {
return _models[model_idx].get_shape(name);
const std::vector<int>& get_shape_by_name(const int model_idx,
const std::string& name) {
return _models[model_idx].get_shape_by_name(name);
}
const std::vector<int>&& get_shape_by_name_with_rv(const int model_idx,
const std::string& name) {
return std::move(_models[model_idx].get_shape_by_name_with_rv(name));
}
const std::vector<int>& get_lod(const int model_idx,
const std::string& name) {
return _models[model_idx].get_lod(name);
const std::vector<int>& get_lod_by_name(const int model_idx,
const std::string& name) {
return _models[model_idx].get_lod_by_name(name);
}
const std::vector<int>&& get_lod_by_name_with_rv(const int model_idx,
const std::string& name) {
return std::move(_models[model_idx].get_lod_by_name_with_rv(name));
}
void add_model_res(ModelRes&& res) {
_engine_names.push_back(res.engine_name());
......
......@@ -51,14 +51,22 @@ PYBIND11_MODULE(serving_client, m) {
})
.def("get_shape",
[](PredictorRes &self, int model_idx, std::string &name) {
return self.get_shape(model_idx, name);
},
py::return_value_policy::reference)
std::vector<int> *ptr = new std::vector<int>(
std::move(self.get_shape_by_name_with_rv(model_idx, name)));
auto capsule = py::capsule(ptr, [](void *p) {
delete reinterpret_cast<std::vector<int> *>(p);
});
return py::array(ptr->size(), ptr->data(), capsule);
})
.def("get_lod",
[](PredictorRes &self, int model_idx, std::string &name) {
return self.get_lod(model_idx, name);
},
py::return_value_policy::reference)
std::vector<int> *ptr = new std::vector<int>(
std::move(self.get_lod_by_name_with_rv(model_idx, name)));
auto capsule = py::capsule(ptr, [](void *p) {
delete reinterpret_cast<std::vector<int> *>(p);
});
return py::array(ptr->size(), ptr->data(), capsule);
})
.def("variant_tag", [](PredictorRes &self) { return self.variant_tag(); })
.def("get_engine_names",
[](PredictorRes &self) { return self.get_engine_names(); });
......@@ -109,7 +117,8 @@ PYBIND11_MODULE(serving_client, m) {
fetch_name,
predict_res_batch,
pid);
})
},
py::call_guard<py::gil_scoped_release>())
.def("numpy_predict",
[](PredictorClient &self,
const std::vector<std::vector<py::array_t<float>>>
......
......@@ -26,7 +26,7 @@ class ServingModels(object):
self.model_dict["ChineseWordSegmentation"] = ["lac"]
self.model_dict["ObjectDetection"] = ["faster_rcnn", "yolov3"]
self.model_dict["ImageSegmentation"] = [
"unet", "deeplabv3", "deeplabv3+cityspaces"
"unet", "deeplabv3", "deeplabv3+cityscapes"
]
self.model_dict["ImageClassification"] = [
"resnet_v2_50_imagenet", "mobilenet_v2_imagenet"
......
......@@ -21,6 +21,7 @@ import google.protobuf.text_format
import numpy as np
import time
import sys
from .serving_client import PredictorRes
int_type = 0
float_type = 1
......@@ -108,7 +109,6 @@ class Client(object):
self.feed_names_ = []
self.fetch_names_ = []
self.client_handle_ = None
self.result_handle_ = None
self.feed_shapes_ = {}
self.feed_types_ = {}
self.feed_names_to_idx_ = {}
......@@ -122,7 +122,6 @@ class Client(object):
def load_client_config(self, path):
from .serving_client import PredictorClient
from .serving_client import PredictorRes
model_conf = m_config.GeneralModelConfig()
f = open(path, 'r')
model_conf = google.protobuf.text_format.Merge(
......@@ -132,7 +131,6 @@ class Client(object):
# get feed vars, fetch vars
# get feed shapes, feed types
# map feed names to index
self.result_handle_ = PredictorRes()
self.client_handle_ = PredictorClient()
self.client_handle_.init(path)
if "FLAGS_max_body_size" not in os.environ:
......@@ -293,15 +291,17 @@ class Client(object):
self.profile_.record('py_prepro_1')
self.profile_.record('py_client_infer_0')
result_batch = self.result_handle_
result_batch_handle = PredictorRes()
if self.all_numpy_input:
res = self.client_handle_.numpy_predict(
float_slot_batch, float_feed_names, float_shape, int_slot_batch,
int_feed_names, int_shape, fetch_names, result_batch, self.pid)
int_feed_names, int_shape, fetch_names, result_batch_handle,
self.pid)
elif self.has_numpy_input == False:
res = self.client_handle_.batch_predict(
float_slot_batch, float_feed_names, float_shape, int_slot_batch,
int_feed_names, int_shape, fetch_names, result_batch, self.pid)
int_feed_names, int_shape, fetch_names, result_batch_handle,
self.pid)
else:
raise SystemExit(
"Please make sure the inputs are all in list type or all in numpy.array type"
......@@ -314,26 +314,28 @@ class Client(object):
return None
multi_result_map = []
model_engine_names = result_batch.get_engine_names()
model_engine_names = result_batch_handle.get_engine_names()
for mi, engine_name in enumerate(model_engine_names):
result_map = {}
# result map needs to be a numpy array
for i, name in enumerate(fetch_names):
if self.fetch_names_to_type_[name] == int_type:
# result_map[name] will be py::array(numpy array)
result_map[name] = result_batch.get_int64_by_name(mi, name)
shape = result_batch.get_shape(mi, name)
result_map[name] = result_batch_handle.get_int64_by_name(
mi, name)
shape = result_batch_handle.get_shape(mi, name)
result_map[name].shape = shape
if name in self.lod_tensor_set:
result_map["{}.lod".format(name)] = np.array(
result_batch.get_lod(mi, name))
result_map["{}.lod".format(
name)] = result_batch_handle.get_lod(mi, name)
elif self.fetch_names_to_type_[name] == float_type:
result_map[name] = result_batch.get_float_by_name(mi, name)
shape = result_batch.get_shape(mi, name)
result_map[name] = result_batch_handle.get_float_by_name(
mi, name)
shape = result_batch_handle.get_shape(mi, name)
result_map[name].shape = shape
if name in self.lod_tensor_set:
result_map["{}.lod".format(name)] = np.array(
result_batch.get_lod(mi, name))
result_map["{}.lod".format(
name)] = result_batch_handle.get_lod(mi, name)
multi_result_map.append(result_map)
ret = None
if len(model_engine_names) == 1:
......@@ -351,7 +353,7 @@ class Client(object):
# When using the A/B test, the tag of variant needs to be returned
return ret if not need_variant_tag else [
ret, self.result_handle_.variant_tag()
ret, result_batch_handle.variant_tag()
]
def release(self):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册