提交 57c2eeb7 编写于 作者: M MRXLT

fix app

上级 bd42658a
......@@ -21,15 +21,15 @@ python -m paddle_serving_app.package --model_list
python -m paddle_serving_app.package --get_model senta_bilstm
```
11 pre-trained models are built into paddle_serving_app, covering 6 kinds of prediction tasks.
10 pre-trained models are built into paddle_serving_app, covering 6 kinds of prediction tasks.
The model files can be directly used for deployment, and the `--tutorial` argument can be added to obtain the deployment method.
| Prediction task | Model name |
| ------------ | ------------------------------------------------ |
| SentimentAnalysis | 'senta_bilstm', 'senta_bow', 'senta_cnn' |
| SemanticRepresentation | 'ernie_base' |
| SemanticRepresentation | 'ernie' |
| ChineseWordSegmentation | 'lac' |
| ObjectDetection | 'faster_rcnn', 'yolov3' |
| ObjectDetection | 'faster_rcnn' |
| ImageSegmentation | 'unet', 'deeplabv3' |
| ImageClassification | 'resnet_v2_50_imagenet', 'mobilenet_v2_imagenet' |
......@@ -76,7 +76,7 @@ Preprocessing for Chinese word segmentation task.
[example](../examples/senta/senta_web_service.py)
- The image preprocessing method is more flexible than the above method, and can be combined by the following multiple classes,[example](../examples/imagenet/image_rpc_client.py)
- The image preprocessing method is more flexible than the above method, and can be combined by the following multiple classes,[example](../examples/imagenet/resnet50_rpc_client.py)
- class Sequentia
......
......@@ -20,14 +20,14 @@ python -m paddle_serving_app.package --model_list
python -m paddle_serving_app.package --get_model senta_bilstm
```
paddle_serving_app中内置了11中预训练模型,涵盖了6种预测任务。获取到的模型文件可以直接用于部署,添加`--tutorial`参数可以获取对应的部署方式。
paddle_serving_app中内置了10种预训练模型,涵盖了6种预测任务。获取到的模型文件可以直接用于部署,添加`--tutorial`参数可以获取对应的部署方式。
| 预测服务类型 | 模型名称 |
| ------------ | ------------------------------------------------ |
| 中文情感分析 | 'senta_bilstm', 'senta_bow', 'senta_cnn' |
| 语义理解 | 'ernie_base' |
| 语义理解 | 'ernie' |
| 中文分词 | 'lac' |
| 图像检测 | 'faster_rcnn', 'yolov3' |
| 图像检测 | 'faster_rcnn' |
| 图像分割 | 'unet', 'deeplabv3' |
| 图像分类 | 'resnet_v2_50_imagenet', 'mobilenet_v2_imagenet' |
......@@ -71,7 +71,7 @@ paddle_serving_app针对CV和NLP领域的模型任务,提供了多种常见的
[参考示例](../examples/senta/senta_web_service.py)
- 图像的预处理方法相比于上述的方法更加灵活多变,可以通过以下的多个类进行组合,[参考示例](../examples/imagenet/image_rpc_client.py)
- 图像的预处理方法相比于上述的方法更加灵活多变,可以通过以下的多个类进行组合,[参考示例](../examples/imagenet/resnet50_rpc_client.py)
- class Sequentia
......
......@@ -22,9 +22,9 @@ class ServingModels(object):
self.model_dict = OrderedDict()
self.model_dict[
"SentimentAnalysis"] = ["senta_bilstm", "senta_bow", "senta_cnn"]
self.model_dict["SemanticRepresentation"] = ["ernie_base"]
self.model_dict["SemanticRepresentation"] = ["ernie"]
self.model_dict["ChineseWordSegmentation"] = ["lac"]
self.model_dict["ObjectDetection"] = ["faster_rcnn", "yolov3"]
self.model_dict["ObjectDetection"] = ["faster_rcnn"]
self.model_dict["ImageSegmentation"] = [
"unet", "deeplabv3", "deeplabv3+cityscapes"
]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册