未验证 提交 563421e7 编写于 作者: J Jiawei Wang 提交者: GitHub

Merge branch 'develop' into develop

...@@ -18,7 +18,6 @@ ...@@ -18,7 +18,6 @@
#include "core/sdk-cpp/include/common.h" #include "core/sdk-cpp/include/common.h"
#include "core/sdk-cpp/include/predictor_sdk.h" #include "core/sdk-cpp/include/predictor_sdk.h"
#include "core/util/include/timer.h" #include "core/util/include/timer.h"
DEFINE_bool(profile_client, false, ""); DEFINE_bool(profile_client, false, "");
DEFINE_bool(profile_server, false, ""); DEFINE_bool(profile_server, false, "");
...@@ -46,7 +45,7 @@ void PredictorClient::init_gflags(std::vector<std::string> argv) { ...@@ -46,7 +45,7 @@ void PredictorClient::init_gflags(std::vector<std::string> argv) {
int argc = argv.size(); int argc = argv.size();
char **arr = new char *[argv.size()]; char **arr = new char *[argv.size()];
std::string line; std::string line;
for (size_t i = 0; i < argv.size(); i++) { for (size_t i = 0; i < argv.size(); ++i) {
arr[i] = &argv[i][0]; arr[i] = &argv[i][0];
line += argv[i]; line += argv[i];
line += ' '; line += ' ';
...@@ -189,7 +188,6 @@ int PredictorClient::numpy_predict( ...@@ -189,7 +188,6 @@ int PredictorClient::numpy_predict(
} }
int vec_idx = 0; int vec_idx = 0;
for (int bi = 0; bi < batch_size; bi++) { for (int bi = 0; bi < batch_size; bi++) {
VLOG(2) << "prepare batch " << bi; VLOG(2) << "prepare batch " << bi;
std::vector<Tensor *> tensor_vec; std::vector<Tensor *> tensor_vec;
...@@ -220,11 +218,10 @@ int PredictorClient::numpy_predict( ...@@ -220,11 +218,10 @@ int PredictorClient::numpy_predict(
return -1; return -1;
} }
int nbytes = float_feed[vec_idx].nbytes(); int nbytes = float_feed[vec_idx].nbytes();
// int ndims = float_feed[vec_idx].ndim(); void *rawdata_ptr = (void *)(float_feed[vec_idx].data(0));
void *rawdata_ptr = (void *)float_feed[vec_idx].data(0);
int total_number = float_feed[vec_idx].size(); int total_number = float_feed[vec_idx].size();
// float* end_ptr = (rawdata_ptr + total_number);
Tensor *tensor = tensor_vec[idx]; Tensor *tensor = tensor_vec[idx];
VLOG(2) << "prepare float feed " << name << " shape size " VLOG(2) << "prepare float feed " << name << " shape size "
<< float_shape[vec_idx].size(); << float_shape[vec_idx].size();
for (uint32_t j = 0; j < float_shape[vec_idx].size(); ++j) { for (uint32_t j = 0; j < float_shape[vec_idx].size(); ++j) {
...@@ -234,6 +231,7 @@ int PredictorClient::numpy_predict( ...@@ -234,6 +231,7 @@ int PredictorClient::numpy_predict(
tensor->add_lod(float_lod_slot_batch[vec_idx][j]); tensor->add_lod(float_lod_slot_batch[vec_idx][j]);
} }
tensor->set_elem_type(P_FLOAT32); tensor->set_elem_type(P_FLOAT32);
tensor->mutable_float_data()->Resize(total_number, 0); tensor->mutable_float_data()->Resize(total_number, 0);
memcpy(tensor->mutable_float_data()->mutable_data(), rawdata_ptr, nbytes); memcpy(tensor->mutable_float_data()->mutable_data(), rawdata_ptr, nbytes);
vec_idx++; vec_idx++;
...@@ -251,7 +249,7 @@ int PredictorClient::numpy_predict( ...@@ -251,7 +249,7 @@ int PredictorClient::numpy_predict(
} }
Tensor *tensor = tensor_vec[idx]; Tensor *tensor = tensor_vec[idx];
int nbytes = int_feed[vec_idx].nbytes(); int nbytes = int_feed[vec_idx].nbytes();
void *rawdata_ptr = (void *)int_feed[vec_idx].data(0); void *rawdata_ptr = (void *)(int_feed[vec_idx].data(0));
int total_number = int_feed[vec_idx].size(); int total_number = int_feed[vec_idx].size();
for (uint32_t j = 0; j < int_shape[vec_idx].size(); ++j) { for (uint32_t j = 0; j < int_shape[vec_idx].size(); ++j) {
...@@ -263,19 +261,14 @@ int PredictorClient::numpy_predict( ...@@ -263,19 +261,14 @@ int PredictorClient::numpy_predict(
tensor->set_elem_type(_type[idx]); tensor->set_elem_type(_type[idx]);
if (_type[idx] == P_INT64) { if (_type[idx] == P_INT64) {
VLOG(2) << "prepare int feed " << name << " shape size "
<< int_shape[vec_idx].size();
tensor->mutable_int64_data()->Resize(total_number, 0); tensor->mutable_int64_data()->Resize(total_number, 0);
memcpy( memcpy(
tensor->mutable_int64_data()->mutable_data(), rawdata_ptr, nbytes); tensor->mutable_int64_data()->mutable_data(), rawdata_ptr, nbytes);
vec_idx++;
} else { } else {
VLOG(2) << "prepare int32 feed " << name << " shape size "
<< int_shape[vec_idx].size();
tensor->mutable_int_data()->Resize(total_number, 0); tensor->mutable_int_data()->Resize(total_number, 0);
memcpy(tensor->mutable_int_data()->mutable_data(), rawdata_ptr, nbytes); memcpy(tensor->mutable_int_data()->mutable_data(), rawdata_ptr, nbytes);
vec_idx++;
} }
vec_idx++;
} }
VLOG(2) << "batch [" << bi << "] " VLOG(2) << "batch [" << bi << "] "
......
...@@ -356,7 +356,8 @@ class Client(object): ...@@ -356,7 +356,8 @@ class Client(object):
int_feed_names.append(key) int_feed_names.append(key)
shape_lst = [] shape_lst = []
if batch == False: if batch == False:
feed_i[key] = feed_i[key][np.newaxis, :] feed_i[key] = np.expand_dims(feed_i[key], 0).repeat(
1, axis=0)
if isinstance(feed_i[key], np.ndarray): if isinstance(feed_i[key], np.ndarray):
shape_lst.extend(list(feed_i[key].shape)) shape_lst.extend(list(feed_i[key].shape))
int_shape.append(shape_lst) int_shape.append(shape_lst)
...@@ -369,10 +370,10 @@ class Client(object): ...@@ -369,10 +370,10 @@ class Client(object):
int_lod_slot_batch.append([]) int_lod_slot_batch.append([])
if isinstance(feed_i[key], np.ndarray): if isinstance(feed_i[key], np.ndarray):
int_slot.append(feed_i[key]) int_slot.append(np.ascontiguousarray(feed_i[key]))
self.has_numpy_input = True self.has_numpy_input = True
else: else:
int_slot.append(feed_i[key]) int_slot.append(np.ascontiguousarray(feed_i[key]))
self.all_numpy_input = False self.all_numpy_input = False
elif self.feed_types_[key] in float_type: elif self.feed_types_[key] in float_type:
...@@ -380,7 +381,8 @@ class Client(object): ...@@ -380,7 +381,8 @@ class Client(object):
float_feed_names.append(key) float_feed_names.append(key)
shape_lst = [] shape_lst = []
if batch == False: if batch == False:
feed_i[key] = feed_i[key][np.newaxis, :] feed_i[key] = np.expand_dims(feed_i[key], 0).repeat(
1, axis=0)
if isinstance(feed_i[key], np.ndarray): if isinstance(feed_i[key], np.ndarray):
shape_lst.extend(list(feed_i[key].shape)) shape_lst.extend(list(feed_i[key].shape))
float_shape.append(shape_lst) float_shape.append(shape_lst)
...@@ -393,10 +395,10 @@ class Client(object): ...@@ -393,10 +395,10 @@ class Client(object):
float_lod_slot_batch.append([]) float_lod_slot_batch.append([])
if isinstance(feed_i[key], np.ndarray): if isinstance(feed_i[key], np.ndarray):
float_slot.append(feed_i[key]) float_slot.append(np.ascontiguousarray(feed_i[key]))
self.has_numpy_input = True self.has_numpy_input = True
else: else:
float_slot.append(feed_i[key]) float_slot.append(np.ascontiguousarray(feed_i[key]))
self.all_numpy_input = False self.all_numpy_input = False
#if input is string, feed is not numpy. #if input is string, feed is not numpy.
elif self.feed_types_[key] in string_type: elif self.feed_types_[key] in string_type:
...@@ -408,7 +410,7 @@ class Client(object): ...@@ -408,7 +410,7 @@ class Client(object):
key)]) key)])
else: else:
string_lod_slot_batch.append([]) string_lod_slot_batch.append([])
string_slot.append(feed_i[key]) string_slot.append(np.ascontiguousarray(feed_i[key]))
self.has_numpy_input = True self.has_numpy_input = True
int_slot_batch.append(int_slot) int_slot_batch.append(int_slot)
int_lod_slot_batch.append(int_lod_slot) int_lod_slot_batch.append(int_lod_slot)
...@@ -626,6 +628,7 @@ class MultiLangClient(object): ...@@ -626,6 +628,7 @@ class MultiLangClient(object):
raise Exception("error tensor value type.") raise Exception("error tensor value type.")
else: else:
raise Exception("var must be list or ndarray.") raise Exception("var must be list or ndarray.")
data = np.ascontiguousarray(data)
tensor.data = data.tobytes() tensor.data = data.tobytes()
tensor.shape.extend(list(var.shape)) tensor.shape.extend(list(var.shape))
if "{}.lod".format(name) in feed.keys(): if "{}.lod".format(name) in feed.keys():
...@@ -700,7 +703,7 @@ class MultiLangClient(object): ...@@ -700,7 +703,7 @@ class MultiLangClient(object):
if batch is False: if batch is False:
for key in feed: for key in feed:
if ".lod" not in key: if ".lod" not in key:
feed[key] = feed[key][np.newaxis, :] feed[key] = np.expand_dims(feed[key], 0).repeat(1, axis=0)
if not asyn: if not asyn:
try: try:
self.profile_.record('py_prepro_0') self.profile_.record('py_prepro_0')
......
...@@ -126,7 +126,7 @@ class MultiLangServerServiceServicer(multi_lang_general_model_service_pb2_grpc. ...@@ -126,7 +126,7 @@ class MultiLangServerServiceServicer(multi_lang_general_model_service_pb2_grpc.
else: else:
raise Exception("error type.") raise Exception("error type.")
data.shape = list(feed_inst.tensor_array[idx].shape) data.shape = list(feed_inst.tensor_array[idx].shape)
feed_dict[name] = data feed_dict[name] = np.ascontiguousarray(data)
if len(var.lod) > 0: if len(var.lod) > 0:
feed_dict["{}.lod".format(name)] = var.lod feed_dict["{}.lod".format(name)] = var.lod
feed_batch.append(feed_dict) feed_batch.append(feed_dict)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册