提交 555f78b7 编写于 作者: J Jiawei Wang 提交者: GitHub

Create NEW_OPERATOR_CN.md

上级 eef9a524
# 如何开发一个新的General Op?
在本文档中,我们主要集中于如何为Paddle Serving开发新的服务器端运算符。 在开始编写新运算符之前,让我们看一些示例代码以获得为服务器编写新运算符的基本思想。 我们假设您已经知道Paddle Serving服务器端的基本计算逻辑。 下面的代码您可以在 Serving代码库下的 `core/general-server/op` 目录查阅。
``` c++
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
#include "paddle_inference_api.h" // NOLINT
#endif
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
namespace baidu {
namespace paddle_serving {
namespace serving {
class GeneralInferOp
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(GeneralInferOp);
int inference();
};
} // namespace serving
} // namespace paddle_serving
} // namespace baidu
```
## 定义一个Op
上面的头文件声明了一个名为`GeneralInferOp`的PaddleServing运算符。 在运行时,将调用函数 `int inference()`。 通常,我们将服务器端运算符定义为baidu::paddle_serving::predictor::OpWithChannel的子类,并使用 `GeneralBlob` 数据结构。
## 在Op之间使用 `GeneralBlob`
`GeneralBlob` 是一种可以在服务器端运算符之间使用的数据结构。 `tensor_vector``GeneralBlob`中最重要的数据结构。 服务器端的操作员可以将多个`paddle::PaddleTensor`作为输入,并可以将多个`paddle::PaddleTensor`作为输出。 特别是,`tensor_vector`可以在没有内存拷贝的操作下输入到Paddle推理引擎中。
``` c++
struct GeneralBlob {
std::vector<paddle::PaddleTensor> tensor_vector;
int64_t time_stamp[20];
int p_size = 0;
int _batch_size;
void Clear() {
size_t tensor_count = tensor_vector.size();
for (size_t ti = 0; ti < tensor_count; ++ti) {
tensor_vector[ti].shape.clear();
}
tensor_vector.clear();
}
int SetBatchSize(int batch_size) { _batch_size = batch_size; }
int GetBatchSize() const { return _batch_size; }
std::string ShortDebugString() const { return "Not implemented!"; }
};
```
### 实现 `int Inference()`
``` c++
int GeneralInferOp::inference() {
VLOG(2) << "Going to run inference";
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name());
VLOG(2) << "Get precedent op name: " << pre_name();
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
if (!input_blob) {
LOG(ERROR) << "Failed mutable depended argument, op:" << pre_name();
return -1;
}
const TensorVector *in = &input_blob->tensor_vector;
TensorVector *out = &output_blob->tensor_vector;
int batch_size = input_blob->GetBatchSize();
VLOG(2) << "input batch size: " << batch_size;
output_blob->SetBatchSize(batch_size);
VLOG(2) << "infer batch size: " << batch_size;
Timer timeline;
int64_t start = timeline.TimeStampUS();
timeline.Start();
if (InferManager::instance().infer(GENERAL_MODEL_NAME, in, out, batch_size)) {
LOG(ERROR) << "Failed do infer in fluid model: " << GENERAL_MODEL_NAME;
return -1;
}
int64_t end = timeline.TimeStampUS();
CopyBlobInfo(input_blob, output_blob);
AddBlobInfo(output_blob, start);
AddBlobInfo(output_blob, end);
return 0;
}
DEFINE_OP(GeneralInferOp);
```
`input_blob``output_blob` 都有很多的 `paddle::PaddleTensor`, 且Paddle预测库会被 `InferManager::instance().infer(GENERAL_MODEL_NAME, in, out, batch_size)`调用。此函数中的其他大多数代码都与性能分析有关,将来我们也可能会删除多余的代码。
基本上,以上代码可以实现一个新的运算符。如果您想访问字典资源,可以参考`core/predictor/framework/resource.cpp`来添加全局可见资源。资源的初始化在启动服务器的运行时执行。
## 定义 Python API
在服务器端为Paddle Serving定义C++运算符后,最后一步是在Python API中为Paddle Serving服务器API添加注册, `python/paddle_serving_server/__init__.py`文件里有关于API注册的代码如下
``` python
self.op_dict = {
"general_infer": "GeneralInferOp",
"general_reader": "GeneralReaderOp",
"general_response": "GeneralResponseOp",
"general_text_reader": "GeneralTextReaderOp",
"general_text_response": "GeneralTextResponseOp",
"general_single_kv": "GeneralSingleKVOp",
"general_dist_kv": "GeneralDistKVOp"
}
```
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册