未验证 提交 52d5d7ec 编写于 作者: D Dong Daxiang 提交者: GitHub

Update DESIGN_DOC.md

上级 9c560f36
......@@ -7,23 +7,34 @@
- 工业级:为了达到工业级深度学习模型在线部署的要求,
Paddle Serving提供很多大规模场景需要的部署功能:1)分布式稀疏参数索引功能;2)高并发底层通信能力;3)模型管理、在线A/B流量测试、模型热加载。
- 简单易用:此外,为了让使用Paddle的用户能够以极低的成本部署模型,PaddleServing设计了一套与Paddle训练框架无缝打通的预测部署API,普通模型可以使用一行命令进行服务部署。
- 简单易用:为了让使用Paddle的用户能够以极低的成本部署模型,PaddleServing设计了一套与Paddle训练框架无缝打通的预测部署API,普通模型可以使用一行命令进行服务部署。
- 功能扩展:当前,Paddle Serving支持C++、Python、Golang的客户端,未来也会面向不同类型的客户新增多种语言的客户端。在Paddle Serving的框架设计方面,尽管当前Paddle Serving以支持Paddle模型的部署为核心功能,
用户可以很容易嵌入其他的机器学习库部署在线预测。
## 2. 模块设计与实现
### 2.1 与Paddle无缝衔接
### 2.1 Python API接口设计
### 2.2 Python API接口设计
#### 2.1.1 训练模型的保存
Paddle的模型预测需要重点关注的内容:1)模型的输入变量;2)模型的输出变量;3)模型结构和模型参数。Paddle Serving Python API提供用户可以在训练过程中保存模型的接口,并将Paddle Serving在部署阶段需要保存的配置打包保存,一个示例如下:
``` python
import paddle_serving_client.io as serving_io
serving_io.save_model("serving_model", "client_conf",
{"words": data}, {"prediction": prediction},
fluid.default_main_program())
```
### 2.3 底层通信机制
### 2.2 底层通信机制
### 2.4 核心执行引擎
### 2.3 核心执行引擎
## 3. 工业级特性
### 3.1 分布式稀疏索引
### 3.2 模型管理、在线A/B流量测试、模型热加载
## 4. 用户类型
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册