Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
50730465
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
50730465
编写于
9月 01, 2021
作者:
T
TeslaZhao
提交者:
GitHub
9月 01, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1370 from ShiningZhang/develop
Add c++ brpc client
上级
a152d43d
79c2994d
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
1078 addition
and
0 deletion
+1078
-0
core/general-client/CMakeLists.txt
core/general-client/CMakeLists.txt
+21
-0
core/general-client/README_CN.md
core/general-client/README_CN.md
+33
-0
core/general-client/example/simple_client.cpp
core/general-client/example/simple_client.cpp
+129
-0
core/general-client/include/brpc_client.h
core/general-client/include/brpc_client.h
+50
-0
core/general-client/include/client.h
core/general-client/include/client.h
+257
-0
core/general-client/src/brpc_client.cpp
core/general-client/src/brpc_client.cpp
+172
-0
core/general-client/src/client.cpp
core/general-client/src/client.cpp
+416
-0
未找到文件。
core/general-client/CMakeLists.txt
浏览文件 @
50730465
...
@@ -3,3 +3,24 @@ add_subdirectory(pybind11)
...
@@ -3,3 +3,24 @@ add_subdirectory(pybind11)
pybind11_add_module
(
serving_client src/general_model.cpp src/pybind_general_model.cpp
)
pybind11_add_module
(
serving_client src/general_model.cpp src/pybind_general_model.cpp
)
target_link_libraries
(
serving_client PRIVATE -Wl,--whole-archive utils sdk-cpp pybind python -Wl,--no-whole-archive -lpthread -lcrypto -lm -lrt -lssl -ldl -lz -Wl,-rpath,'$ORIGIN'/lib
)
target_link_libraries
(
serving_client PRIVATE -Wl,--whole-archive utils sdk-cpp pybind python -Wl,--no-whole-archive -lpthread -lcrypto -lm -lrt -lssl -ldl -lz -Wl,-rpath,'$ORIGIN'/lib
)
endif
()
endif
()
if
(
CLIENT
)
FILE
(
GLOB client_srcs include/*.h src/client.cpp src/brpc_client.cpp
)
add_library
(
client
${
client_srcs
}
)
add_dependencies
(
client utils sdk-cpp
)
target_link_libraries
(
client utils sdk-cpp
)
endif
()
if
(
CLIENT
)
include_directories
(
SYSTEM
${
CMAKE_CURRENT_LIST_DIR
}
/../../
)
add_executable
(
simple_client example/simple_client.cpp
)
add_dependencies
(
simple_client utils sdk-cpp client
)
target_link_libraries
(
simple_client -Wl,--whole-archive
-Wl,--no-whole-archive -lpthread -lcrypto -lm -lrt -lssl -ldl -lz -Wl,-rpath,'$ORIGIN'/lib
)
target_link_libraries
(
simple_client utils
)
target_link_libraries
(
simple_client sdk-cpp
)
target_link_libraries
(
simple_client client
)
endif
()
\ No newline at end of file
core/general-client/README_CN.md
0 → 100755
浏览文件 @
50730465
# 用于Paddle Serving的C++客户端
(简体中文|
[
English
](
./README.md
)
)
## 请求BRPC-Server
### 服务端启动
以fit_a_line模型为例,服务端启动与常规BRPC-Server端启动命令一样。
```
cd ../../python/examples/fit_a_line
sh get_data.sh
python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9393
```
### 客户端预测
客户端目前支持BRPC
目前已经实现了BRPC的封装函数,详见
[
brpc_client.cpp
](
./src/brpc_client.cpp
)
```
./simple_client --client_conf="uci_housing_client/serving_client_conf.prototxt" --server_port="127.0.0.1:9393" --test_type="brpc" --sample_type="fit_a_line"
```
更多示例详见
[
simple_client.cpp
](
./example/simple_client.cpp
)
| Argument | Type | Default | Description |
| ---------------------------------------------- | ---- | ------------------------------------ | ----------------------------------------------------- |
|
`client_conf`
| str |
`"serving_client_conf.prototxt"`
| Path of client conf |
|
`server_port`
| str |
`"127.0.0.1:9393"`
| Exposed ip:port of server |
|
`test_type`
| str |
`"brpc"`
| Mode of request "brpc" |
|
`sample_type`
| str |
`"fit_a_line"`
| Type of sample include "fit_a_line,bert" |
core/general-client/example/simple_client.cpp
0 → 100644
浏览文件 @
50730465
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <fstream>
#include <vector>
#include "core/general-client/include/brpc_client.h"
using
baidu
::
paddle_serving
::
client
::
ServingClient
;
using
baidu
::
paddle_serving
::
client
::
ServingBrpcClient
;
using
baidu
::
paddle_serving
::
client
::
PredictorInputs
;
using
baidu
::
paddle_serving
::
client
::
PredictorOutputs
;
DEFINE_string
(
server_port
,
"127.0.0.1:9292"
,
"ip:port"
);
DEFINE_string
(
client_conf
,
"serving_client_conf.prototxt"
,
"Path of client conf"
);
DEFINE_string
(
test_type
,
"brpc"
,
"brpc"
);
// fit_a_line, bert
DEFINE_string
(
sample_type
,
"fit_a_line"
,
"List: fit_a_line, bert"
);
namespace
{
int
prepare_fit_a_line
(
PredictorInputs
&
input
,
std
::
vector
<
std
::
string
>&
fetch_name
)
{
std
::
vector
<
float
>
float_feed
=
{
0.0137
f
,
-
0.1136
f
,
0.2553
f
,
-
0.0692
f
,
0.0582
f
,
-
0.0727
f
,
-
0.1583
f
,
-
0.0584
f
,
0.6283
f
,
0.4919
f
,
0.1856
f
,
0.0795
f
,
-
0.0332
f
};
std
::
vector
<
int
>
float_shape
=
{
1
,
13
};
std
::
string
feed_name
=
"x"
;
fetch_name
=
{
"price"
};
std
::
vector
<
int
>
lod
;
input
.
add_float_data
(
float_feed
,
feed_name
,
float_shape
,
lod
);
return
0
;
}
int
prepare_bert
(
PredictorInputs
&
input
,
std
::
vector
<
std
::
string
>&
fetch_name
)
{
{
std
::
vector
<
float
>
float_feed
(
128
,
0.0
f
);
float_feed
[
0
]
=
1.0
f
;
std
::
vector
<
int
>
float_shape
=
{
1
,
128
,
1
};
std
::
string
feed_name
=
"input_mask"
;
std
::
vector
<
int
>
lod
;
input
.
add_float_data
(
float_feed
,
feed_name
,
float_shape
,
lod
);
}
{
std
::
vector
<
int64_t
>
feed
(
128
,
0
);
std
::
vector
<
int
>
shape
=
{
1
,
128
,
1
};
std
::
string
feed_name
=
"position_ids"
;
std
::
vector
<
int
>
lod
;
input
.
add_int64_data
(
feed
,
feed_name
,
shape
,
lod
);
}
{
std
::
vector
<
int64_t
>
feed
(
128
,
0
);
feed
[
0
]
=
101
;
std
::
vector
<
int
>
shape
=
{
1
,
128
,
1
};
std
::
string
feed_name
=
"input_ids"
;
std
::
vector
<
int
>
lod
;
input
.
add_int64_data
(
feed
,
feed_name
,
shape
,
lod
);
}
{
std
::
vector
<
int64_t
>
feed
(
128
,
0
);
std
::
vector
<
int
>
shape
=
{
1
,
128
,
1
};
std
::
string
feed_name
=
"segment_ids"
;
std
::
vector
<
int
>
lod
;
input
.
add_int64_data
(
feed
,
feed_name
,
shape
,
lod
);
}
fetch_name
=
{
"pooled_output"
};
return
0
;
}
}
// namespace
int
main
(
int
argc
,
char
*
argv
[])
{
google
::
ParseCommandLineFlags
(
&
argc
,
&
argv
,
true
);
std
::
string
url
=
FLAGS_server_port
;
std
::
string
conf
=
FLAGS_client_conf
;
std
::
string
test_type
=
FLAGS_test_type
;
std
::
string
sample_type
=
FLAGS_sample_type
;
LOG
(
INFO
)
<<
"url = "
<<
url
<<
";"
<<
"client_conf = "
<<
conf
<<
";"
<<
"test_type = "
<<
test_type
<<
"sample_type = "
<<
sample_type
;
std
::
unique_ptr
<
ServingClient
>
client
;
// default type is brpc
// will add grpc&http in the future
if
(
test_type
==
"brpc"
)
{
client
.
reset
(
new
ServingBrpcClient
());
}
else
{
client
.
reset
(
new
ServingBrpcClient
());
}
std
::
vector
<
std
::
string
>
confs
;
confs
.
push_back
(
conf
);
if
(
client
->
init
(
confs
,
url
)
!=
0
)
{
LOG
(
ERROR
)
<<
"Failed to init client!"
;
return
0
;
}
PredictorInputs
input
;
PredictorOutputs
output
;
std
::
vector
<
std
::
string
>
fetch_name
;
if
(
sample_type
==
"fit_a_line"
)
{
prepare_fit_a_line
(
input
,
fetch_name
);
}
else
if
(
sample_type
==
"bert"
)
{
prepare_bert
(
input
,
fetch_name
);
}
else
{
prepare_fit_a_line
(
input
,
fetch_name
);
}
if
(
client
->
predict
(
input
,
output
,
fetch_name
,
0
)
!=
0
)
{
LOG
(
ERROR
)
<<
"Failed to predict!"
;
}
else
{
LOG
(
INFO
)
<<
output
.
print
();
}
return
0
;
}
core/general-client/include/brpc_client.h
0 → 100644
浏览文件 @
50730465
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "core/general-client/include/client.h"
#include "core/sdk-cpp/include/predictor_sdk.h"
using
baidu
::
paddle_serving
::
sdk_cpp
::
Predictor
;
using
baidu
::
paddle_serving
::
sdk_cpp
::
PredictorApi
;
namespace
baidu
{
namespace
paddle_serving
{
namespace
client
{
class
ServingBrpcClient
:
public
ServingClient
{
public:
ServingBrpcClient
()
{};
~
ServingBrpcClient
()
{};
virtual
int
connect
(
const
std
::
string
server_port
);
int
predict
(
const
PredictorInputs
&
inputs
,
PredictorOutputs
&
outputs
,
const
std
::
vector
<
std
::
string
>&
fetch_name
,
const
uint64_t
log_id
);
private:
// generate default SDKConf
std
::
string
gen_desc
(
const
std
::
string
server_port
);
private:
PredictorApi
_api
;
Predictor
*
_predictor
;
};
}
// namespace client
}
// namespace paddle_serving
}
// namespace baidu
\ No newline at end of file
core/general-client/include/client.h
0 → 100644
浏览文件 @
50730465
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include <map>
#include <sstream>
#include <memory>
namespace
baidu
{
namespace
paddle_serving
{
namespace
predictor
{
namespace
general_model
{
class
Request
;
class
Response
;
}
}
namespace
client
{
class
PredictorInputs
;
class
PredictorOutputs
;
class
ServingClient
{
public:
ServingClient
()
{};
virtual
~
ServingClient
()
=
default
;
int
init
(
const
std
::
vector
<
std
::
string
>&
client_conf
,
const
std
::
string
server_port
);
int
load_client_config
(
const
std
::
vector
<
std
::
string
>&
client_conf
);
virtual
int
connect
(
const
std
::
string
server_port
)
=
0
;
virtual
int
predict
(
const
PredictorInputs
&
inputs
,
PredictorOutputs
&
outputs
,
const
std
::
vector
<
std
::
string
>&
fetch_name
,
const
uint64_t
log_id
)
=
0
;
protected:
std
::
map
<
std
::
string
,
int
>
_feed_name_to_idx
;
std
::
vector
<
std
::
string
>
_feed_name
;
std
::
map
<
std
::
string
,
int
>
_fetch_name_to_idx
;
std
::
map
<
std
::
string
,
std
::
string
>
_fetch_name_to_var_name
;
std
::
map
<
std
::
string
,
int
>
_fetch_name_to_type
;
std
::
vector
<
std
::
vector
<
int
>>
_shape
;
std
::
vector
<
int
>
_type
;
std
::
vector
<
int64_t
>
_last_request_ts
;
};
class
PredictorData
{
public:
PredictorData
()
{};
virtual
~
PredictorData
()
{};
void
add_float_data
(
const
std
::
vector
<
float
>&
data
,
const
std
::
string
&
name
,
const
std
::
vector
<
int
>&
shape
,
const
std
::
vector
<
int
>&
lod
,
const
int
datatype
=
1
);
void
add_int64_data
(
const
std
::
vector
<
int64_t
>&
data
,
const
std
::
string
&
name
,
const
std
::
vector
<
int
>&
shape
,
const
std
::
vector
<
int
>&
lod
,
const
int
datatype
=
0
);
void
add_int32_data
(
const
std
::
vector
<
int32_t
>&
data
,
const
std
::
string
&
name
,
const
std
::
vector
<
int
>&
shape
,
const
std
::
vector
<
int
>&
lod
,
const
int
datatype
=
2
);
void
add_string_data
(
const
std
::
string
&
data
,
const
std
::
string
&
name
,
const
std
::
vector
<
int
>&
shape
,
const
std
::
vector
<
int
>&
lod
,
const
int
datatype
=
3
);
const
std
::
map
<
std
::
string
,
std
::
vector
<
float
>>&
float_data_map
()
const
{
return
_float_data_map
;
};
std
::
map
<
std
::
string
,
std
::
vector
<
float
>>*
mutable_float_data_map
()
{
return
&
_float_data_map
;
};
const
std
::
map
<
std
::
string
,
std
::
vector
<
int64_t
>>&
int64_data_map
()
const
{
return
_int64_data_map
;
};
std
::
map
<
std
::
string
,
std
::
vector
<
int64_t
>>*
mutable_int64_data_map
()
{
return
&
_int64_data_map
;
};
const
std
::
map
<
std
::
string
,
std
::
vector
<
int32_t
>>&
int_data_map
()
const
{
return
_int32_data_map
;
};
std
::
map
<
std
::
string
,
std
::
vector
<
int32_t
>>*
mutable_int_data_map
()
{
return
&
_int32_data_map
;
};
const
std
::
map
<
std
::
string
,
std
::
string
>&
string_data_map
()
const
{
return
_string_data_map
;
};
std
::
map
<
std
::
string
,
std
::
string
>*
mutable_string_data_map
()
{
return
&
_string_data_map
;
};
const
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>&
shape_map
()
const
{
return
_shape_map
;
};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>*
mutable_shape_map
()
{
return
&
_shape_map
;
};
const
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>&
lod_map
()
const
{
return
_lod_map
;
};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>*
mutable_lod_map
()
{
return
&
_lod_map
;
};
int
get_datatype
(
std
::
string
name
)
const
;
std
::
string
print
();
private:
// used to print vector data map e.g. _float_data_map
template
<
typename
T1
,
typename
T2
>
std
::
string
map2string
(
const
std
::
map
<
T1
,
std
::
vector
<
T2
>>&
map
)
{
std
::
ostringstream
oss
;
oss
.
str
(
""
);
oss
.
precision
(
6
);
oss
.
setf
(
std
::
ios
::
fixed
);
std
::
string
key_seg
=
":"
;
std
::
string
val_seg
=
","
;
std
::
string
end_seg
=
"
\n
"
;
typename
std
::
map
<
T1
,
std
::
vector
<
T2
>>::
const_iterator
it
=
map
.
begin
();
typename
std
::
map
<
T1
,
std
::
vector
<
T2
>>::
const_iterator
itEnd
=
map
.
end
();
for
(;
it
!=
itEnd
;
it
++
)
{
oss
<<
"{"
;
oss
<<
it
->
first
<<
key_seg
;
const
std
::
vector
<
T2
>&
v
=
it
->
second
;
for
(
size_t
i
=
0
;
i
<
v
.
size
();
++
i
)
{
if
(
i
!=
v
.
size
()
-
1
)
{
oss
<<
v
[
i
]
<<
val_seg
;
}
else
{
oss
<<
v
[
i
];
}
}
oss
<<
"}"
;
}
return
oss
.
str
();
};
// used to print data map without vector e.g. _string_data_map
template
<
typename
T1
,
typename
T2
>
std
::
string
map2string
(
const
std
::
map
<
T1
,
T2
>&
map
)
{
std
::
ostringstream
oss
;
oss
.
str
(
""
);
std
::
string
key_seg
=
":"
;
std
::
string
val_seg
=
","
;
std
::
string
end_seg
=
"
\n
"
;
typename
std
::
map
<
T1
,
T2
>::
const_iterator
it
=
map
.
begin
();
typename
std
::
map
<
T1
,
T2
>::
const_iterator
itEnd
=
map
.
end
();
for
(;
it
!=
itEnd
;
it
++
)
{
oss
<<
"{"
;
oss
<<
it
->
first
<<
key_seg
<<
it
->
second
;
oss
<<
"}"
;
}
return
oss
.
str
();
};
protected:
std
::
map
<
std
::
string
,
std
::
vector
<
float
>>
_float_data_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
int64_t
>>
_int64_data_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
int32_t
>>
_int32_data_map
;
std
::
map
<
std
::
string
,
std
::
string
>
_string_data_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
_shape_map
;
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
_lod_map
;
std
::
map
<
std
::
string
,
int
>
_datatype_map
;
};
class
PredictorInputs
:
public
PredictorData
{
public:
PredictorInputs
()
{};
virtual
~
PredictorInputs
()
{};
// generate proto from inputs
// feed_name_to_idx: mapping alias name to idx
// feed_name: mapping idx to name
static
int
GenProto
(
const
PredictorInputs
&
inputs
,
const
std
::
map
<
std
::
string
,
int
>&
feed_name_to_idx
,
const
std
::
vector
<
std
::
string
>&
feed_name
,
predictor
::
general_model
::
Request
&
req
);
};
class
PredictorOutputs
{
public:
struct
PredictorOutput
{
std
::
string
engine_name
;
PredictorData
data
;
};
PredictorOutputs
()
{};
virtual
~
PredictorOutputs
()
{};
const
std
::
vector
<
std
::
shared_ptr
<
PredictorOutputs
::
PredictorOutput
>>&
datas
()
{
return
_datas
;
};
std
::
vector
<
std
::
shared_ptr
<
PredictorOutputs
::
PredictorOutput
>>*
mutable_datas
()
{
return
&
_datas
;
};
void
add_data
(
const
std
::
shared_ptr
<
PredictorOutputs
::
PredictorOutput
>&
data
)
{
_datas
.
push_back
(
data
);
};
std
::
string
print
();
void
clear
();
// Parse proto to outputs
// fetch_name: name of data to be output
// fetch_name_to_type: mapping of fetch_name to datatype
static
int
ParseProto
(
const
predictor
::
general_model
::
Response
&
res
,
const
std
::
vector
<
std
::
string
>&
fetch_name
,
std
::
map
<
std
::
string
,
int
>&
fetch_name_to_type
,
PredictorOutputs
&
outputs
);
protected:
std
::
vector
<
std
::
shared_ptr
<
PredictorOutputs
::
PredictorOutput
>>
_datas
;
};
}
// namespace client
}
// namespace paddle_serving
}
// namespace baidu
\ No newline at end of file
core/general-client/src/brpc_client.cpp
0 → 100644
浏览文件 @
50730465
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-client/include/brpc_client.h"
#include "core/sdk-cpp/include/common.h"
#include "core/util/include/timer.h"
#include "core/sdk-cpp/builtin_format.pb.h"
#include "core/sdk-cpp/general_model_service.pb.h"
DEFINE_bool
(
profile_client
,
false
,
""
);
DEFINE_bool
(
profile_server
,
false
,
""
);
#define BRPC_MAX_BODY_SIZE 512 * 1024 * 1024
namespace
baidu
{
namespace
paddle_serving
{
namespace
client
{
using
baidu
::
paddle_serving
::
Timer
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Request
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Response
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Tensor
;
using
configure
::
SDKConf
;
using
configure
::
VariantConf
;
using
configure
::
Predictor
;
using
configure
::
VariantConf
;
int
ServingBrpcClient
::
connect
(
const
std
::
string
server_port
)
{
brpc
::
fLU64
::
FLAGS_max_body_size
=
BRPC_MAX_BODY_SIZE
;
if
(
_api
.
create
(
gen_desc
(
server_port
))
!=
0
)
{
LOG
(
ERROR
)
<<
"Predictor Creation Failed"
;
return
-
1
;
}
// _api.thrd_initialize();
return
0
;
}
std
::
string
ServingBrpcClient
::
gen_desc
(
const
std
::
string
server_port
)
{
// default config for brpc
SDKConf
sdk_conf
;
Predictor
*
predictor
=
sdk_conf
.
add_predictors
();
predictor
->
set_name
(
"general_model"
);
predictor
->
set_service_name
(
"baidu.paddle_serving.predictor.general_model.GeneralModelService"
);
predictor
->
set_endpoint_router
(
"WeightedRandomRender"
);
predictor
->
mutable_weighted_random_render_conf
()
->
set_variant_weight_list
(
"100"
);
VariantConf
*
predictor_var
=
predictor
->
add_variants
();
predictor_var
->
set_tag
(
"default_tag_1"
);
std
::
string
cluster
=
"list://"
+
server_port
;
predictor_var
->
mutable_naming_conf
()
->
set_cluster
(
cluster
);
VariantConf
*
var
=
sdk_conf
.
mutable_default_variant_conf
();
var
->
set_tag
(
"default"
);
var
->
mutable_connection_conf
()
->
set_connect_timeout_ms
(
2000
);
var
->
mutable_connection_conf
()
->
set_rpc_timeout_ms
(
200000
);
var
->
mutable_connection_conf
()
->
set_connect_retry_count
(
2
);
var
->
mutable_connection_conf
()
->
set_max_connection_per_host
(
100
);
var
->
mutable_connection_conf
()
->
set_hedge_request_timeout_ms
(
-
1
);
var
->
mutable_connection_conf
()
->
set_hedge_fetch_retry_count
(
2
);
var
->
mutable_connection_conf
()
->
set_connection_type
(
"pooled"
);
var
->
mutable_connection_conf
()
->
set_connect_timeout_ms
(
2000
);
var
->
mutable_naming_conf
()
->
set_cluster_filter_strategy
(
"Default"
);
var
->
mutable_naming_conf
()
->
set_load_balance_strategy
(
"la"
);
var
->
mutable_rpc_parameter
()
->
set_compress_type
(
0
);
var
->
mutable_rpc_parameter
()
->
set_package_size
(
20
);
var
->
mutable_rpc_parameter
()
->
set_protocol
(
"baidu_std"
);
var
->
mutable_rpc_parameter
()
->
set_max_channel_per_request
(
3
);
return
sdk_conf
.
SerializePartialAsString
();
}
int
ServingBrpcClient
::
predict
(
const
PredictorInputs
&
inputs
,
PredictorOutputs
&
outputs
,
const
std
::
vector
<
std
::
string
>&
fetch_name
,
const
uint64_t
log_id
)
{
Timer
timeline
;
int64_t
preprocess_start
=
timeline
.
TimeStampUS
();
// thread initialize for StubTLS
_api
.
thrd_initialize
();
std
::
string
variant_tag
;
// predictor is bound to request with brpc::Controller
_predictor
=
_api
.
fetch_predictor
(
"general_model"
,
&
variant_tag
);
if
(
_predictor
==
NULL
)
{
LOG
(
ERROR
)
<<
"Failed fetch predictor so predict error!"
;
return
-
1
;
}
// predict_res_batch.set_variant_tag(variant_tag);
VLOG
(
2
)
<<
"fetch general model predictor done."
;
VLOG
(
2
)
<<
"variant_tag:"
<<
variant_tag
;
VLOG
(
2
)
<<
"max body size : "
<<
brpc
::
fLU64
::
FLAGS_max_body_size
;
Request
req
;
req
.
set_log_id
(
log_id
);
for
(
auto
&
name
:
fetch_name
)
{
req
.
add_fetch_var_names
(
name
);
}
if
(
PredictorInputs
::
GenProto
(
inputs
,
_feed_name_to_idx
,
_feed_name
,
req
)
!=
0
)
{
LOG
(
ERROR
)
<<
"Failed to preprocess req!"
;
return
-
1
;
}
int64_t
preprocess_end
=
timeline
.
TimeStampUS
();
int64_t
client_infer_start
=
timeline
.
TimeStampUS
();
Response
res
;
int64_t
client_infer_end
=
0
;
int64_t
postprocess_start
=
0
;
int64_t
postprocess_end
=
0
;
if
(
FLAGS_profile_client
)
{
if
(
FLAGS_profile_server
)
{
req
.
set_profile_server
(
true
);
}
}
res
.
Clear
();
if
(
_predictor
->
inference
(
&
req
,
&
res
)
!=
0
)
{
LOG
(
ERROR
)
<<
"failed call predictor with req: "
<<
req
.
ShortDebugString
();
return
-
1
;
}
client_infer_end
=
timeline
.
TimeStampUS
();
postprocess_start
=
client_infer_end
;
if
(
PredictorOutputs
::
ParseProto
(
res
,
fetch_name
,
_fetch_name_to_type
,
outputs
)
!=
0
)
{
LOG
(
ERROR
)
<<
"Failed to post_process res!"
;
return
-
1
;
}
postprocess_end
=
timeline
.
TimeStampUS
();
if
(
FLAGS_profile_client
)
{
std
::
ostringstream
oss
;
oss
<<
"PROFILE
\t
"
<<
"pid:"
<<
getpid
()
<<
"
\t
"
<<
"prepro_0:"
<<
preprocess_start
<<
" "
<<
"prepro_1:"
<<
preprocess_end
<<
" "
<<
"client_infer_0:"
<<
client_infer_start
<<
" "
<<
"client_infer_1:"
<<
client_infer_end
<<
" "
;
if
(
FLAGS_profile_server
)
{
int
op_num
=
res
.
profile_time_size
()
/
2
;
for
(
int
i
=
0
;
i
<
op_num
;
++
i
)
{
oss
<<
"op"
<<
i
<<
"_0:"
<<
res
.
profile_time
(
i
*
2
)
<<
" "
;
oss
<<
"op"
<<
i
<<
"_1:"
<<
res
.
profile_time
(
i
*
2
+
1
)
<<
" "
;
}
}
oss
<<
"postpro_0:"
<<
postprocess_start
<<
" "
;
oss
<<
"postpro_1:"
<<
postprocess_end
;
fprintf
(
stderr
,
"%s
\n
"
,
oss
.
str
().
c_str
());
}
// release predictor
_api
.
thrd_clear
();
return
0
;
}
}
// namespace general_model
}
// namespace paddle_serving
}
// namespace baidu
core/general-client/src/client.cpp
0 → 100644
浏览文件 @
50730465
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-client/include/client.h"
#include "core/sdk-cpp/include/common.h"
#include "core/sdk-cpp/general_model_service.pb.h"
namespace
baidu
{
namespace
paddle_serving
{
namespace
client
{
using
configure
::
GeneralModelConfig
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Request
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Response
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Tensor
;
enum
ProtoDataType
{
P_INT64
,
P_FLOAT32
,
P_INT32
,
P_STRING
};
int
ServingClient
::
init
(
const
std
::
vector
<
std
::
string
>&
client_conf
,
const
std
::
string
server_port
)
{
if
(
load_client_config
(
client_conf
)
!=
0
)
{
LOG
(
ERROR
)
<<
"Failed to load client config"
;
return
-
1
;
}
// pure virtual func, subclass implementation
if
(
connect
(
server_port
)
!=
0
)
{
LOG
(
ERROR
)
<<
"Failed to connect"
;
return
-
1
;
}
return
0
;
}
int
ServingClient
::
load_client_config
(
const
std
::
vector
<
std
::
string
>
&
conf_file
)
{
try
{
GeneralModelConfig
model_config
;
if
(
configure
::
read_proto_conf
(
conf_file
[
0
].
c_str
(),
&
model_config
)
!=
0
)
{
LOG
(
ERROR
)
<<
"Failed to load general model config"
<<
", file path: "
<<
conf_file
[
0
];
return
-
1
;
}
_feed_name_to_idx
.
clear
();
_fetch_name_to_idx
.
clear
();
_shape
.
clear
();
int
feed_var_num
=
model_config
.
feed_var_size
();
_feed_name
.
clear
();
VLOG
(
2
)
<<
"feed var num: "
<<
feed_var_num
;
for
(
int
i
=
0
;
i
<
feed_var_num
;
++
i
)
{
_feed_name_to_idx
[
model_config
.
feed_var
(
i
).
alias_name
()]
=
i
;
VLOG
(
2
)
<<
"feed ["
<<
i
<<
"]"
<<
" name: "
<<
model_config
.
feed_var
(
i
).
name
();
_feed_name
.
push_back
(
model_config
.
feed_var
(
i
).
name
());
VLOG
(
2
)
<<
"feed alias name: "
<<
model_config
.
feed_var
(
i
).
alias_name
()
<<
" index: "
<<
i
;
std
::
vector
<
int
>
tmp_feed_shape
;
VLOG
(
2
)
<<
"feed"
<<
"["
<<
i
<<
"] shape:"
;
for
(
int
j
=
0
;
j
<
model_config
.
feed_var
(
i
).
shape_size
();
++
j
)
{
tmp_feed_shape
.
push_back
(
model_config
.
feed_var
(
i
).
shape
(
j
));
VLOG
(
2
)
<<
"shape["
<<
j
<<
"]: "
<<
model_config
.
feed_var
(
i
).
shape
(
j
);
}
_type
.
push_back
(
model_config
.
feed_var
(
i
).
feed_type
());
VLOG
(
2
)
<<
"feed"
<<
"["
<<
i
<<
"] feed type: "
<<
model_config
.
feed_var
(
i
).
feed_type
();
_shape
.
push_back
(
tmp_feed_shape
);
}
if
(
conf_file
.
size
()
>
1
)
{
model_config
.
Clear
();
if
(
configure
::
read_proto_conf
(
conf_file
[
conf_file
.
size
()
-
1
].
c_str
(),
&
model_config
)
!=
0
)
{
LOG
(
ERROR
)
<<
"Failed to load general model config"
<<
", file path: "
<<
conf_file
[
conf_file
.
size
()
-
1
];
return
-
1
;
}
}
int
fetch_var_num
=
model_config
.
fetch_var_size
();
VLOG
(
2
)
<<
"fetch_var_num: "
<<
fetch_var_num
;
for
(
int
i
=
0
;
i
<
fetch_var_num
;
++
i
)
{
_fetch_name_to_idx
[
model_config
.
fetch_var
(
i
).
alias_name
()]
=
i
;
VLOG
(
2
)
<<
"fetch ["
<<
i
<<
"]"
<<
" alias name: "
<<
model_config
.
fetch_var
(
i
).
alias_name
();
_fetch_name_to_var_name
[
model_config
.
fetch_var
(
i
).
alias_name
()]
=
model_config
.
fetch_var
(
i
).
name
();
_fetch_name_to_type
[
model_config
.
fetch_var
(
i
).
alias_name
()]
=
model_config
.
fetch_var
(
i
).
fetch_type
();
}
}
catch
(
std
::
exception
&
e
)
{
LOG
(
ERROR
)
<<
"Failed load general model config"
<<
e
.
what
();
return
-
1
;
}
return
0
;
}
void
PredictorData
::
add_float_data
(
const
std
::
vector
<
float
>&
data
,
const
std
::
string
&
name
,
const
std
::
vector
<
int
>&
shape
,
const
std
::
vector
<
int
>&
lod
,
const
int
datatype
)
{
_float_data_map
[
name
]
=
data
;
_shape_map
[
name
]
=
shape
;
_lod_map
[
name
]
=
lod
;
_datatype_map
[
name
]
=
datatype
;
}
void
PredictorData
::
add_int64_data
(
const
std
::
vector
<
int64_t
>&
data
,
const
std
::
string
&
name
,
const
std
::
vector
<
int
>&
shape
,
const
std
::
vector
<
int
>&
lod
,
const
int
datatype
)
{
_int64_data_map
[
name
]
=
data
;
_shape_map
[
name
]
=
shape
;
_lod_map
[
name
]
=
lod
;
_datatype_map
[
name
]
=
datatype
;
}
void
PredictorData
::
add_int32_data
(
const
std
::
vector
<
int32_t
>&
data
,
const
std
::
string
&
name
,
const
std
::
vector
<
int
>&
shape
,
const
std
::
vector
<
int
>&
lod
,
const
int
datatype
)
{
_int32_data_map
[
name
]
=
data
;
_shape_map
[
name
]
=
shape
;
_lod_map
[
name
]
=
lod
;
_datatype_map
[
name
]
=
datatype
;
}
void
PredictorData
::
add_string_data
(
const
std
::
string
&
data
,
const
std
::
string
&
name
,
const
std
::
vector
<
int
>&
shape
,
const
std
::
vector
<
int
>&
lod
,
const
int
datatype
)
{
_string_data_map
[
name
]
=
data
;
_shape_map
[
name
]
=
shape
;
_lod_map
[
name
]
=
lod
;
_datatype_map
[
name
]
=
datatype
;
}
int
PredictorData
::
get_datatype
(
std
::
string
name
)
const
{
std
::
map
<
std
::
string
,
int
>::
const_iterator
it
=
_datatype_map
.
find
(
name
);
if
(
it
!=
_datatype_map
.
end
())
{
return
it
->
second
;
}
return
0
;
}
std
::
string
PredictorData
::
print
()
{
std
::
string
res
;
res
.
append
(
map2string
<
std
::
string
,
float
>
(
_float_data_map
));
res
.
append
(
map2string
<
std
::
string
,
int64_t
>
(
_int64_data_map
));
res
.
append
(
map2string
<
std
::
string
,
int32_t
>
(
_int32_data_map
));
res
.
append
(
map2string
<
std
::
string
,
std
::
string
>
(
_string_data_map
));
return
res
;
}
int
PredictorInputs
::
GenProto
(
const
PredictorInputs
&
inputs
,
const
std
::
map
<
std
::
string
,
int
>&
feed_name_to_idx
,
const
std
::
vector
<
std
::
string
>&
feed_name
,
Request
&
req
)
{
const
std
::
map
<
std
::
string
,
std
::
vector
<
float
>>&
float_feed_map
=
inputs
.
float_data_map
();
const
std
::
map
<
std
::
string
,
std
::
vector
<
int64_t
>>&
int64_feed_map
=
inputs
.
int64_data_map
();
const
std
::
map
<
std
::
string
,
std
::
vector
<
int32_t
>>&
int32_feed_map
=
inputs
.
int_data_map
();
const
std
::
map
<
std
::
string
,
std
::
string
>&
string_feed_map
=
inputs
.
string_data_map
();
const
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>&
shape_map
=
inputs
.
shape_map
();
const
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>&
lod_map
=
inputs
.
lod_map
();
VLOG
(
2
)
<<
"float feed name size: "
<<
float_feed_map
.
size
();
VLOG
(
2
)
<<
"int feed name size: "
<<
int64_feed_map
.
size
();
VLOG
(
2
)
<<
"string feed name size: "
<<
string_feed_map
.
size
();
// batch is already in Tensor.
for
(
std
::
map
<
std
::
string
,
std
::
vector
<
float
>>::
const_iterator
iter
=
float_feed_map
.
begin
();
iter
!=
float_feed_map
.
end
();
++
iter
)
{
std
::
string
name
=
iter
->
first
;
const
std
::
vector
<
float
>&
float_data
=
iter
->
second
;
const
std
::
vector
<
int
>&
float_shape
=
shape_map
.
at
(
name
);
const
std
::
vector
<
int
>&
float_lod
=
lod_map
.
at
(
name
);
// default datatype = P_FLOAT32
int
datatype
=
inputs
.
get_datatype
(
name
);
std
::
map
<
std
::
string
,
int
>::
const_iterator
feed_name_it
=
feed_name_to_idx
.
find
(
name
);
if
(
feed_name_it
==
feed_name_to_idx
.
end
())
{
LOG
(
ERROR
)
<<
"Do not find ["
<<
name
<<
"] in feed_map!"
;
return
-
1
;
}
int
idx
=
feed_name_to_idx
.
at
(
name
);
VLOG
(
2
)
<<
"prepare float feed "
<<
name
<<
" idx "
<<
idx
;
int
total_number
=
float_data
.
size
();
Tensor
*
tensor
=
req
.
add_tensor
();
VLOG
(
2
)
<<
"prepare float feed "
<<
name
<<
" shape size "
<<
float_shape
.
size
();
for
(
uint32_t
j
=
0
;
j
<
float_shape
.
size
();
++
j
)
{
tensor
->
add_shape
(
float_shape
[
j
]);
}
for
(
uint32_t
j
=
0
;
j
<
float_lod
.
size
();
++
j
)
{
tensor
->
add_lod
(
float_lod
[
j
]);
}
tensor
->
set_elem_type
(
datatype
);
tensor
->
set_name
(
feed_name
[
idx
]);
tensor
->
set_alias_name
(
name
);
tensor
->
mutable_float_data
()
->
Resize
(
total_number
,
0
);
memcpy
(
tensor
->
mutable_float_data
()
->
mutable_data
(),
float_data
.
data
(),
total_number
*
sizeof
(
float
));
}
for
(
std
::
map
<
std
::
string
,
std
::
vector
<
int64_t
>>::
const_iterator
iter
=
int64_feed_map
.
begin
();
iter
!=
int64_feed_map
.
end
();
++
iter
)
{
std
::
string
name
=
iter
->
first
;
const
std
::
vector
<
int64_t
>&
int64_data
=
iter
->
second
;
const
std
::
vector
<
int
>&
int64_shape
=
shape_map
.
at
(
name
);
const
std
::
vector
<
int
>&
int64_lod
=
lod_map
.
at
(
name
);
// default datatype = P_INT64
int
datatype
=
inputs
.
get_datatype
(
name
);
std
::
map
<
std
::
string
,
int
>::
const_iterator
feed_name_it
=
feed_name_to_idx
.
find
(
name
);
if
(
feed_name_it
==
feed_name_to_idx
.
end
())
{
LOG
(
ERROR
)
<<
"Do not find ["
<<
name
<<
"] in feed_map!"
;
return
-
1
;
}
int
idx
=
feed_name_to_idx
.
at
(
name
);
Tensor
*
tensor
=
req
.
add_tensor
();
int
total_number
=
int64_data
.
size
();
for
(
uint32_t
j
=
0
;
j
<
int64_shape
.
size
();
++
j
)
{
tensor
->
add_shape
(
int64_shape
[
j
]);
}
for
(
uint32_t
j
=
0
;
j
<
int64_lod
.
size
();
++
j
)
{
tensor
->
add_lod
(
int64_lod
[
j
]);
}
tensor
->
set_elem_type
(
datatype
);
tensor
->
set_name
(
feed_name
[
idx
]);
tensor
->
set_alias_name
(
name
);
tensor
->
mutable_int64_data
()
->
Resize
(
total_number
,
0
);
memcpy
(
tensor
->
mutable_int64_data
()
->
mutable_data
(),
int64_data
.
data
(),
total_number
*
sizeof
(
int64_t
));
}
for
(
std
::
map
<
std
::
string
,
std
::
vector
<
int32_t
>>::
const_iterator
iter
=
int32_feed_map
.
begin
();
iter
!=
int32_feed_map
.
end
();
++
iter
)
{
std
::
string
name
=
iter
->
first
;
const
std
::
vector
<
int32_t
>&
int32_data
=
iter
->
second
;
const
std
::
vector
<
int
>&
int32_shape
=
shape_map
.
at
(
name
);
const
std
::
vector
<
int
>&
int32_lod
=
lod_map
.
at
(
name
);
// default datatype = P_INT32
int
datatype
=
inputs
.
get_datatype
(
name
);
std
::
map
<
std
::
string
,
int
>::
const_iterator
feed_name_it
=
feed_name_to_idx
.
find
(
name
);
if
(
feed_name_it
==
feed_name_to_idx
.
end
())
{
LOG
(
ERROR
)
<<
"Do not find ["
<<
name
<<
"] in feed_map!"
;
return
-
1
;
}
int
idx
=
feed_name_to_idx
.
at
(
name
);
Tensor
*
tensor
=
req
.
add_tensor
();
int
total_number
=
int32_data
.
size
();
for
(
uint32_t
j
=
0
;
j
<
int32_shape
.
size
();
++
j
)
{
tensor
->
add_shape
(
int32_shape
[
j
]);
}
for
(
uint32_t
j
=
0
;
j
<
int32_lod
.
size
();
++
j
)
{
tensor
->
add_lod
(
int32_lod
[
j
]);
}
tensor
->
set_elem_type
(
datatype
);
tensor
->
set_name
(
feed_name
[
idx
]);
tensor
->
set_alias_name
(
name
);
tensor
->
mutable_int_data
()
->
Resize
(
total_number
,
0
);
memcpy
(
tensor
->
mutable_int_data
()
->
mutable_data
(),
int32_data
.
data
(),
total_number
*
sizeof
(
int32_t
));
}
for
(
std
::
map
<
std
::
string
,
std
::
string
>::
const_iterator
iter
=
string_feed_map
.
begin
();
iter
!=
string_feed_map
.
end
();
++
iter
)
{
std
::
string
name
=
iter
->
first
;
const
std
::
string
&
string_data
=
iter
->
second
;
const
std
::
vector
<
int
>&
string_shape
=
shape_map
.
at
(
name
);
const
std
::
vector
<
int
>&
string_lod
=
lod_map
.
at
(
name
);
// default datatype = P_STRING
int
datatype
=
inputs
.
get_datatype
(
name
);
std
::
map
<
std
::
string
,
int
>::
const_iterator
feed_name_it
=
feed_name_to_idx
.
find
(
name
);
if
(
feed_name_it
==
feed_name_to_idx
.
end
())
{
LOG
(
ERROR
)
<<
"Do not find ["
<<
name
<<
"] in feed_map!"
;
return
-
1
;
}
int
idx
=
feed_name_to_idx
.
at
(
name
);
Tensor
*
tensor
=
req
.
add_tensor
();
for
(
uint32_t
j
=
0
;
j
<
string_shape
.
size
();
++
j
)
{
tensor
->
add_shape
(
string_shape
[
j
]);
}
for
(
uint32_t
j
=
0
;
j
<
string_lod
.
size
();
++
j
)
{
tensor
->
add_lod
(
string_lod
[
j
]);
}
tensor
->
set_elem_type
(
datatype
);
tensor
->
set_name
(
feed_name
[
idx
]);
tensor
->
set_alias_name
(
name
);
const
int
string_shape_size
=
string_shape
.
size
();
// string_shape[vec_idx] = [1];cause numpy has no datatype of string.
// we pass string via vector<vector<string> >.
if
(
string_shape_size
!=
1
)
{
LOG
(
ERROR
)
<<
"string_shape_size should be 1-D, but received is : "
<<
string_shape_size
;
return
-
1
;
}
switch
(
string_shape_size
)
{
case
1
:
{
tensor
->
add_data
(
string_data
);
break
;
}
}
}
return
0
;
}
std
::
string
PredictorOutputs
::
print
()
{
std
::
string
res
=
""
;
for
(
size_t
i
=
0
;
i
<
_datas
.
size
();
++
i
)
{
res
.
append
(
_datas
[
i
]
->
engine_name
);
res
.
append
(
":"
);
res
.
append
(
_datas
[
i
]
->
data
.
print
());
res
.
append
(
"
\n
"
);
}
return
res
;
}
void
PredictorOutputs
::
clear
()
{
_datas
.
clear
();
}
int
PredictorOutputs
::
ParseProto
(
const
Response
&
res
,
const
std
::
vector
<
std
::
string
>&
fetch_name
,
std
::
map
<
std
::
string
,
int
>&
fetch_name_to_type
,
PredictorOutputs
&
outputs
)
{
VLOG
(
2
)
<<
"get model output num"
;
uint32_t
model_num
=
res
.
outputs_size
();
VLOG
(
2
)
<<
"model num: "
<<
model_num
;
for
(
uint32_t
m_idx
=
0
;
m_idx
<
model_num
;
++
m_idx
)
{
VLOG
(
2
)
<<
"process model output index: "
<<
m_idx
;
auto
&
output
=
res
.
outputs
(
m_idx
);
std
::
shared_ptr
<
PredictorOutputs
::
PredictorOutput
>
predictor_output
=
std
::
make_shared
<
PredictorOutputs
::
PredictorOutput
>
();
predictor_output
->
engine_name
=
output
.
engine_name
();
std
::
map
<
std
::
string
,
std
::
vector
<
float
>>&
float_data_map
=
*
predictor_output
->
data
.
mutable_float_data_map
();
std
::
map
<
std
::
string
,
std
::
vector
<
int64_t
>>&
int64_data_map
=
*
predictor_output
->
data
.
mutable_int64_data_map
();
std
::
map
<
std
::
string
,
std
::
vector
<
int32_t
>>&
int32_data_map
=
*
predictor_output
->
data
.
mutable_int_data_map
();
std
::
map
<
std
::
string
,
std
::
string
>&
string_data_map
=
*
predictor_output
->
data
.
mutable_string_data_map
();
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>&
shape_map
=
*
predictor_output
->
data
.
mutable_shape_map
();
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>&
lod_map
=
*
predictor_output
->
data
.
mutable_lod_map
();
int
idx
=
0
;
for
(
auto
&
name
:
fetch_name
)
{
// int idx = _fetch_name_to_idx[name];
int
shape_size
=
output
.
tensor
(
idx
).
shape_size
();
VLOG
(
2
)
<<
"fetch var "
<<
name
<<
" index "
<<
idx
<<
" shape size "
<<
shape_size
;
shape_map
[
name
].
resize
(
shape_size
);
for
(
int
i
=
0
;
i
<
shape_size
;
++
i
)
{
shape_map
[
name
][
i
]
=
output
.
tensor
(
idx
).
shape
(
i
);
}
int
lod_size
=
output
.
tensor
(
idx
).
lod_size
();
if
(
lod_size
>
0
)
{
lod_map
[
name
].
resize
(
lod_size
);
for
(
int
i
=
0
;
i
<
lod_size
;
++
i
)
{
lod_map
[
name
][
i
]
=
output
.
tensor
(
idx
).
lod
(
i
);
}
}
idx
+=
1
;
}
idx
=
0
;
for
(
auto
&
name
:
fetch_name
)
{
// int idx = _fetch_name_to_idx[name];
if
(
fetch_name_to_type
[
name
]
==
P_INT64
)
{
VLOG
(
2
)
<<
"fetch var "
<<
name
<<
"type int64"
;
int
size
=
output
.
tensor
(
idx
).
int64_data_size
();
int64_data_map
[
name
]
=
std
::
vector
<
int64_t
>
(
output
.
tensor
(
idx
).
int64_data
().
begin
(),
output
.
tensor
(
idx
).
int64_data
().
begin
()
+
size
);
}
else
if
(
fetch_name_to_type
[
name
]
==
P_FLOAT32
)
{
VLOG
(
2
)
<<
"fetch var "
<<
name
<<
"type float"
;
int
size
=
output
.
tensor
(
idx
).
float_data_size
();
float_data_map
[
name
]
=
std
::
vector
<
float
>
(
output
.
tensor
(
idx
).
float_data
().
begin
(),
output
.
tensor
(
idx
).
float_data
().
begin
()
+
size
);
}
else
if
(
fetch_name_to_type
[
name
]
==
P_INT32
)
{
VLOG
(
2
)
<<
"fetch var "
<<
name
<<
"type int32"
;
int
size
=
output
.
tensor
(
idx
).
int_data_size
();
int32_data_map
[
name
]
=
std
::
vector
<
int32_t
>
(
output
.
tensor
(
idx
).
int_data
().
begin
(),
output
.
tensor
(
idx
).
int_data
().
begin
()
+
size
);
}
idx
+=
1
;
}
outputs
.
add_data
(
predictor_output
);
}
return
0
;
}
}
// namespace client
}
// namespace paddle_serving
}
// namespace baidu
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录