未验证 提交 4e4134df 编写于 作者: J Jiawei Wang 提交者: GitHub

Merge branch 'develop' into dev_2

......@@ -176,8 +176,8 @@ python3 -m paddle_serving_server.serve --model uci_housing_model --thread 10 --p
| Argument | Type | Default | Description |
| ---------------------------------------------- | ---- | ------- | ----------------------------------------------------- |
| `thread` | int | `2` | Number of brpc service thread |
| `op_num` | int[]| `0` | Thread Number for each model in asynchronous mode |
| `op_max_batch` | int[]| `0` | Batch Number for each model in asynchronous mode |
| `runtime_thread_num` | int[]| `0` | Thread Number for each model in asynchronous mode |
| `batch_infer_size` | int[]| `0` | Batch Number for each model in asynchronous mode |
| `gpu_ids` | str[]| `"-1"` | Gpu card id for each model |
| `port` | int | `9292` | Exposed port of current service to users |
| `model` | str[]| `""` | Path of paddle model directory to be served |
......@@ -197,8 +197,8 @@ python3 -m paddle_serving_server.serve --model uci_housing_model --thread 10 --p
In asynchronous mode, each model will start n threads of the number you specify, and each thread contains a model instance. In other words, each model is equivalent to a thread pool containing N threads, and the task is taken from the task queue of the thread pool to execute.
In asynchronous mode, each RPC server thread is only responsible for putting the request into the task queue of the model thread pool. After the task is executed, the completed task is removed from the task queue.
In the above table, the number of RPC server threads is specified by --thread, and the default value is 2.
--op_num specifies the number of threads in the thread pool of each model. The default value is 0, indicating that asynchronous mode is not used.
--op_max_batch specifies the number of batches for each model. The default value is 32. It takes effect when --op_num is not 0.
--runtime_thread_num specifies the number of threads in the thread pool of each model. The default value is 0, indicating that asynchronous mode is not used.
--batch_infer_size specifies the number of batches for each model. The default value is 32. It takes effect when --runtime_thread_num is not 0.
#### When you want a model to use multiple GPU cards.
python3 -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 --gpu_ids 0,1,2
#### When you want 2 models.
......@@ -206,7 +206,7 @@ python3 -m paddle_serving_server.serve --model uci_housing_model_1 uci_housing_m
#### When you want 2 models, and want each of them use multiple GPU cards.
python3 -m paddle_serving_server.serve --model uci_housing_model_1 uci_housing_model_2 --thread 10 --port 9292 --gpu_ids 0,1 1,2
#### When a service contains two models, and each model needs to specify multiple GPU cards, and needs asynchronous mode, each model specifies different concurrency number.
python3 -m paddle_serving_server.serve --model uci_housing_model_1 uci_housing_model_2 --thread 10 --port 9292 --gpu_ids 0,1 1,2 --op_num 4 8
python3 -m paddle_serving_server.serve --model uci_housing_model_1 uci_housing_model_2 --thread 10 --port 9292 --gpu_ids 0,1 1,2 --runtime_thread_num 4 8
</center>
```python
......
......@@ -175,8 +175,8 @@ python3 -m paddle_serving_server.serve --model uci_housing_model --thread 10 --p
| Argument | Type | Default | Description |
| ---------------------------------------------- | ---- | ------- | ----------------------------------------------------- |
| `thread` | int | `2` | Number of brpc service thread |
| `op_num` | int[]| `0` | Thread Number for each model in asynchronous mode |
| `op_max_batch` | int[]| `32` | Batch Number for each model in asynchronous mode |
| `runtime_thread_num` | int[]| `0` | Thread Number for each model in asynchronous mode |
| `batch_infer_size` | int[]| `32` | Batch Number for each model in asynchronous mode |
| `gpu_ids` | str[]| `"-1"` | Gpu card id for each model |
| `port` | int | `9292` | Exposed port of current service to users |
| `model` | str[]| `""` | Path of paddle model directory to be served |
......@@ -195,8 +195,8 @@ python3 -m paddle_serving_server.serve --model uci_housing_model --thread 10 --p
异步模式有助于提高Service服务的吞吐(QPS),但对于单次请求而言,时延会有少量增加。
异步模式中,每个模型会启动您指定个数的N个线程,每个线程中包含一个模型实例,换句话说每个模型相当于包含N个线程的线程池,从线程池的任务队列中取任务来执行。
异步模式中,各个RPC Server的线程只负责将Request请求放入模型线程池的任务队列中,等任务被执行完毕后,再从任务队列中取出已完成的任务。
上表中通过 --thread 10 指定的是RPC Server的线程数量,默认值为2,--op_num 指定的是各个模型的线程池中线程数N,默认值为0,表示不使用异步模式。
--op_max_batch 指定的各个模型的batch数量,默认值为32,该参数只有当--op_num不为0时才生效。
上表中通过 --thread 10 指定的是RPC Server的线程数量,默认值为2,--runtime_thread_num 指定的是各个模型的线程池中线程数N,默认值为0,表示不使用异步模式。
--batch_infer_size 指定的各个模型的batch数量,默认值为32,该参数只有当--runtime_thread_num不为0时才生效。
#### 当您的某个模型想使用多张GPU卡部署时.
python3 -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9292 --gpu_ids 0,1,2
......@@ -205,7 +205,7 @@ python3 -m paddle_serving_server.serve --model uci_housing_model_1 uci_housing_m
#### 当您的一个服务包含两个模型,且每个模型都需要指定多张GPU卡部署时.
python3 -m paddle_serving_server.serve --model uci_housing_model_1 uci_housing_model_2 --thread 10 --port 9292 --gpu_ids 0,1 1,2
#### 当您的一个服务包含两个模型,且每个模型都需要指定多张GPU卡,且需要异步模式每个模型指定不同的并发数时.
python3 -m paddle_serving_server.serve --model uci_housing_model_1 uci_housing_model_2 --thread 10 --port 9292 --gpu_ids 0,1 1,2 --op_num 4 8
python3 -m paddle_serving_server.serve --model uci_housing_model_1 uci_housing_model_2 --thread 10 --port 9292 --gpu_ids 0,1 1,2 --runtime_thread_num 4 8
</center>
......
dag:
#op资源类型, True, 为线程模型;False,为进程模型
is_thread_op: false
#使用性能分析, True,生成Timeline性能数据,对性能有一定影响;False为不使用
tracer:
interval_s: 30
#http端口, rpc_port和http_port不允许同时为空。当rpc_port可用且http_port为空时,不自动生成http_port
http_port: 18082
op:
faster_rcnn:
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
concurrency: 2
local_service_conf:
#client类型,包括brpc, grpc和local_predictor.local_predictor不启动Serving服务,进程内预测
client_type: local_predictor
# device_type, 0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu
device_type: 1
#计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
devices: '2'
#Fetch结果列表,以bert_seq128_model中fetch_var的alias_name为准, 如果没有设置则全部返回
fetch_list:
- save_infer_model/scale_0.tmp_1
#模型路径
model_config: serving_server/
#rpc端口, rpc_port和http_port不允许同时为空。当rpc_port为空且http_port不为空时,会自动将rpc_port设置为http_port+1
rpc_port: 9998
#worker_num, 最大并发数。当build_dag_each_worker=True时, 框架会创建worker_num个进程,每个进程内构建grpcSever和DAG
#当build_dag_each_worker=False时,框架会设置主线程grpc线程池的max_workers=worker_num
worker_num: 20
dag:
#op资源类型, True, 为线程模型;False,为进程模型
is_thread_op: false
#使用性能分析, True,生成Timeline性能数据,对性能有一定影响;False为不使用
tracer:
interval_s: 30
#http端口, rpc_port和http_port不允许同时为空。当rpc_port可用且http_port为空时,不自动生成http_port
http_port: 18082
op:
ppyolo_mbv3:
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
concurrency: 10
local_service_conf:
#client类型,包括brpc, grpc和local_predictor.local_predictor不启动Serving服务,进程内预测
client_type: local_predictor
# device_type, 0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu
device_type: 1
#计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
devices: '2'
#Fetch结果列表,以bert_seq128_model中fetch_var的alias_name为准, 如果没有设置则全部返回
fetch_list:
- save_infer_model/scale_0.tmp_1
#模型路径
model_config: serving_server/
#rpc端口, rpc_port和http_port不允许同时为空。当rpc_port为空且http_port不为空时,会自动将rpc_port设置为http_port+1
rpc_port: 9998
#worker_num, 最大并发数。当build_dag_each_worker=True时, 框架会创建worker_num个进程,每个进程内构建grpcSever和DAG
#当build_dag_each_worker=False时,框架会设置主线程grpc线程池的max_workers=worker_num
worker_num: 20
dag:
#op资源类型, True, 为线程模型;False,为进程模型
is_thread_op: false
#使用性能分析, True,生成Timeline性能数据,对性能有一定影响;False为不使用
tracer:
interval_s: 30
#http端口, rpc_port和http_port不允许同时为空。当rpc_port可用且http_port为空时,不自动生成http_port
http_port: 18082
op:
yolov3:
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
concurrency: 10
local_service_conf:
#client类型,包括brpc, grpc和local_predictor.local_predictor不启动Serving服务,进程内预测
client_type: local_predictor
# device_type, 0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu
device_type: 1
#计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
devices: '2'
#Fetch结果列表,以bert_seq128_model中fetch_var的alias_name为准, 如果没有设置则全部返回
fetch_list:
- save_infer_model/scale_0.tmp_1
#模型路径
model_config: serving_server/
#rpc端口, rpc_port和http_port不允许同时为空。当rpc_port为空且http_port不为空时,会自动将rpc_port设置为http_port+1
rpc_port: 9998
#worker_num, 最大并发数。当build_dag_each_worker=True时, 框架会创建worker_num个进程,每个进程内构建grpcSever和DAG
#当build_dag_each_worker=False时,框架会设置主线程grpc线程池的max_workers=worker_num
worker_num: 20
#worker_num, 最大并发数。当build_dag_each_worker=True时, 框架会创建worker_num个进程,每个进程内构建grpcSever和DAG
##当build_dag_each_worker=False时,框架会设置主线程grpc线程池的max_workers=worker_num
worker_num: 20
#build_dag_each_worker, False,框架在进程内创建一条DAG;True,框架会每个进程内创建多个独立的DAG
build_dag_each_worker: false
dag:
#op资源类型, True, 为线程模型;False,为进程模型
is_thread_op: false
#使用性能分析, True,生成Timeline性能数据,对性能有一定影响;False为不使用
tracer:
interval_s: 10
#http端口, rpc_port和http_port不允许同时为空。当rpc_port可用且http_port为空时,不自动生成http_port
http_port: 18082
#rpc端口, rpc_port和http_port不允许同时为空。当rpc_port为空且http_port不为空时,会自动将rpc_port设置为http_port+1
rpc_port: 9998
op:
bert:
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
concurrency: 2
#当op配置没有server_endpoints时,从local_service_conf读取本地服务配置
local_service_conf:
#client类型,包括brpc, grpc和local_predictor.local_predictor不启动Serving服务,进程内预测
client_type: local_predictor
# device_type, 0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu
device_type: 1
#计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
devices: '2'
#Fetch结果列表,以bert_seq128_model中fetch_var的alias_name为准, 如果没有设置则全部返回
fetch_list:
#bert模型路径
model_config: bert_seq128_model/
......@@ -38,6 +38,9 @@ op:
#Fetch结果列表,以client_config中fetch_var的alias_name为准
fetch_list: ["concat_1.tmp_0"]
# device_type, 0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu
device_type: 0
#计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
devices: ""
......@@ -71,6 +74,8 @@ op:
#Fetch结果列表,以client_config中fetch_var的alias_name为准
fetch_list: ["ctc_greedy_decoder_0.tmp_0", "softmax_0.tmp_0"]
# device_type, 0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu
device_type: 0
#计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
devices: ""
......
......@@ -109,7 +109,12 @@ def is_gpu_mode(unformatted_gpus):
def serve_args():
parser = argparse.ArgumentParser("serve")
parser.add_argument("server", type=str, default="start",nargs="?", help="stop or start PaddleServing")
parser.add_argument(
"server",
type=str,
default="start",
nargs="?",
help="stop or start PaddleServing")
parser.add_argument(
"--thread",
type=int,
......@@ -123,9 +128,13 @@ def serve_args():
parser.add_argument(
"--gpu_ids", type=str, default="", nargs="+", help="gpu ids")
parser.add_argument(
"--op_num", type=int, default=0, nargs="+", help="Number of each op")
"--runtime_thread_num",
type=int,
default=0,
nargs="+",
help="Number of each op")
parser.add_argument(
"--op_max_batch",
"--batch_infer_size",
type=int,
default=32,
nargs="+",
......@@ -251,11 +260,11 @@ def start_gpu_card_model(gpu_mode, port, args): # pylint: disable=doc-string-mi
if args.gpu_multi_stream and device == "gpu":
server.set_gpu_multi_stream()
if args.op_num:
server.set_op_num(args.op_num)
if args.runtime_thread_num:
server.set_runtime_thread_num(args.runtime_thread_num)
if args.op_max_batch:
server.set_op_max_batch(args.op_max_batch)
if args.batch_infer_size:
server.set_batch_infer_size(args.batch_infer_size)
if args.use_lite:
server.set_lite()
......@@ -370,7 +379,7 @@ class MainService(BaseHTTPRequestHandler):
self.wfile.write(json.dumps(response).encode())
def stop_serving(command : str, port : int = None):
def stop_serving(command: str, port: int=None):
'''
Stop PaddleServing by port.
......@@ -400,7 +409,7 @@ def stop_serving(command : str, port : int = None):
start_time = info["start_time"]
if port is not None:
if port in storedPort:
kill_stop_process_by_pid(command ,pid)
kill_stop_process_by_pid(command, pid)
infoList.remove(info)
if len(infoList):
with open(filepath, "w") as fp:
......@@ -410,17 +419,18 @@ def stop_serving(command : str, port : int = None):
return True
else:
if lastInfo == info:
raise ValueError(
"Please confirm the port [%s] you specified is correct." %
port)
raise ValueError(
"Please confirm the port [%s] you specified is correct."
% port)
else:
pass
else:
kill_stop_process_by_pid(command ,pid)
kill_stop_process_by_pid(command, pid)
if lastInfo == info:
os.remove(filepath)
return True
if __name__ == "__main__":
# args.device is not used at all.
# just keep the interface.
......@@ -436,7 +446,7 @@ if __name__ == "__main__":
os._exit(0)
else:
os._exit(-1)
for single_model_config in args.model:
if os.path.isdir(single_model_config):
pass
......
......@@ -82,8 +82,8 @@ class Server(object):
self.mkl_flag = False
self.device = "cpu"
self.gpuid = []
self.op_num = [0]
self.op_max_batch = [32]
self.runtime_thread_num = [0]
self.batch_infer_size = [32]
self.use_trt = False
self.gpu_multi_stream = False
self.use_lite = False
......@@ -171,11 +171,11 @@ class Server(object):
def set_gpuid(self, gpuid):
self.gpuid = format_gpu_to_strlist(gpuid)
def set_op_num(self, op_num):
self.op_num = op_num
def set_runtime_thread_num(self, runtime_thread_num):
self.runtime_thread_num = runtime_thread_num
def set_op_max_batch(self, op_max_batch):
self.op_max_batch = op_max_batch
def set_batch_infer_size(self, batch_infer_size):
self.batch_infer_size = batch_infer_size
def set_trt(self):
self.use_trt = True
......@@ -205,15 +205,15 @@ class Server(object):
else:
self.gpuid = ["-1"]
if isinstance(self.op_num, int):
self.op_num = [self.op_num]
if len(self.op_num) == 0:
self.op_num.append(0)
if isinstance(self.runtime_thread_num, int):
self.runtime_thread_num = [self.runtime_thread_num]
if len(self.runtime_thread_num) == 0:
self.runtime_thread_num.append(0)
if isinstance(self.op_max_batch, int):
self.op_max_batch = [self.op_max_batch]
if len(self.op_max_batch) == 0:
self.op_max_batch.append(32)
if isinstance(self.batch_infer_size, int):
self.batch_infer_size = [self.batch_infer_size]
if len(self.batch_infer_size) == 0:
self.batch_infer_size.append(32)
index = 0
......@@ -224,9 +224,10 @@ class Server(object):
engine.reloadable_meta = model_config_path + "/fluid_time_file"
os.system("touch {}".format(engine.reloadable_meta))
engine.reloadable_type = "timestamp_ne"
engine.runtime_thread_num = self.op_num[index % len(self.op_num)]
engine.batch_infer_size = self.op_max_batch[index %
len(self.op_max_batch)]
engine.runtime_thread_num = self.runtime_thread_num[index % len(
self.runtime_thread_num)]
engine.batch_infer_size = self.batch_infer_size[index % len(
self.batch_infer_size)]
engine.enable_overrun = False
engine.allow_split_request = True
......
......@@ -133,8 +133,8 @@ class WebService(object):
use_calib=False,
use_trt=False,
gpu_multi_stream=False,
op_num=None,
op_max_batch=None):
runtime_thread_num=None,
batch_infer_size=None):
device = "cpu"
server = Server()
......@@ -187,11 +187,11 @@ class WebService(object):
if gpu_multi_stream and device == "gpu":
server.set_gpu_multi_stream()
if op_num:
server.set_op_num(op_num)
if runtime_thread_num:
server.set_runtime_thread_num(runtime_thread_num)
if op_max_batch:
server.set_op_max_batch(op_max_batch)
if batch_infer_size:
server.set_batch_infer_size(batch_infer_size)
if use_lite:
server.set_lite()
......@@ -225,8 +225,8 @@ class WebService(object):
use_calib=self.use_calib,
use_trt=self.use_trt,
gpu_multi_stream=self.gpu_multi_stream,
op_num=self.op_num,
op_max_batch=self.op_max_batch))
runtime_thread_num=self.runtime_thread_num,
batch_infer_size=self.batch_infer_size))
def prepare_server(self,
workdir,
......@@ -241,8 +241,8 @@ class WebService(object):
mem_optim=True,
use_trt=False,
gpu_multi_stream=False,
op_num=None,
op_max_batch=None,
runtime_thread_num=None,
batch_infer_size=None,
gpuid=None):
print("This API will be deprecated later. Please do not use it")
self.workdir = workdir
......@@ -259,9 +259,9 @@ class WebService(object):
self.port_list = []
self.use_trt = use_trt
self.gpu_multi_stream = gpu_multi_stream
self.op_num = op_num
self.op_max_batch = op_max_batch
self.runtime_thread_num = runtime_thread_num
self.batch_infer_size = batch_infer_size
# record port and pid info for stopping process
dump_pid_file([self.port], "web_service")
# if gpuid != None, we will use gpuid first.
......
......@@ -83,7 +83,7 @@ RUN ln -sf /usr/local/bin/python3.6 /usr/local/bin/python3 && ln -sf /usr/local/
RUN rm -r /root/python_build
# Install Go and glide
RUN wget -qO- https://dl.google.com/go/go1.14.linux-amd64.tar.gz | \
RUN wget -qO- https://paddle-ci.cdn.bcebos.com/go1.17.2.linux-amd64.tar.gz | \
tar -xz -C /usr/local && \
mkdir /root/go && \
mkdir /root/go/bin && \
......
......@@ -83,7 +83,7 @@ RUN ln -sf /usr/local/bin/python3.6 /usr/local/bin/python3 && ln -sf /usr/local/
RUN rm -r /root/python_build
# Install Go and glide
RUN wget -qO- https://dl.google.com/go/go1.14.linux-amd64.tar.gz | \
RUN wget -qO- https://paddle-ci.cdn.bcebos.com/go1.17.2.linux-amd64.tar.gz | \
tar -xz -C /usr/local && \
mkdir /root/go && \
mkdir /root/go/bin && \
......
......@@ -83,7 +83,7 @@ RUN ln -sf /usr/local/bin/python3.6 /usr/local/bin/python3 && ln -sf /usr/local/
RUN rm -r /root/python_build
# Install Go and glide
RUN wget -qO- https://dl.google.com/go/go1.14.linux-amd64.tar.gz | \
RUN wget -qO- https://paddle-ci.cdn.bcebos.com/go1.17.2.linux-amd64.tar.gz | \
tar -xz -C /usr/local && \
mkdir /root/go && \
mkdir /root/go/bin && \
......
# A image for building paddle binaries
# Use cuda devel base image for both cpu and gpu environment
# When you modify it, please be aware of cudnn-runtime version
FROM nvidia/cuda:11.2.0-cudnn8-devel-ubuntu16.04
MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com>
# ENV variables
ARG WITH_GPU
ARG WITH_AVX
ENV WITH_GPU=${WITH_GPU:-ON}
ENV WITH_AVX=${WITH_AVX:-ON}
ENV HOME /root
# Add bash enhancements
COPY tools/dockerfiles/root/ /root/
# Prepare packages for Python
RUN apt-get update && \
apt-get install -y make build-essential libssl-dev zlib1g-dev libbz2-dev \
libreadline-dev libsqlite3-dev wget curl llvm libncurses5-dev libncursesw5-dev \
xz-utils tk-dev libffi-dev liblzma-dev
RUN apt-get update && \
apt-get install -y --allow-downgrades --allow-change-held-packages \
patchelf git python-pip python-dev python-opencv openssh-server bison \
wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \
curl sed grep graphviz libjpeg-dev zlib1g-dev \
python-matplotlib unzip \
automake locales clang-format swig \
liblapack-dev liblapacke-dev libcurl4-openssl-dev \
net-tools libtool module-init-tools vim && \
apt-get clean -y
RUN ln -s /usr/lib/x86_64-linux-gnu/libssl.so /usr/lib/libssl.so.10 && \
ln -s /usr/lib/x86_64-linux-gnu/libcrypto.so /usr/lib/libcrypto.so.10
RUN wget https://github.com/koalaman/shellcheck/releases/download/v0.7.1/shellcheck-v0.7.1.linux.x86_64.tar.xz -O shellcheck-v0.7.1.linux.x86_64.tar.xz && \
tar -xf shellcheck-v0.7.1.linux.x86_64.tar.xz && cp shellcheck-v0.7.1/shellcheck /usr/bin/shellcheck && \
rm -rf shellcheck-v0.7.1.linux.x86_64.tar.xz shellcheck-v0.7.1
# Downgrade gcc&&g++
WORKDIR /usr/bin
COPY tools/dockerfiles/build_scripts /build_scripts
RUN bash /build_scripts/install_gcc.sh gcc82 && rm -rf /build_scripts
RUN cp gcc gcc.bak && cp g++ g++.bak && rm gcc && rm g++
RUN ln -s /usr/local/gcc-8.2/bin/gcc /usr/local/bin/gcc
RUN ln -s /usr/local/gcc-8.2/bin/g++ /usr/local/bin/g++
RUN ln -s /usr/local/gcc-8.2/bin/gcc /usr/bin/gcc
RUN ln -s /usr/local/gcc-8.2/bin/g++ /usr/bin/g++
ENV PATH=/usr/local/gcc-8.2/bin:$PATH
# install cmake
WORKDIR /home
RUN wget -q https://cmake.org/files/v3.16/cmake-3.16.0-Linux-x86_64.tar.gz && tar -zxvf cmake-3.16.0-Linux-x86_64.tar.gz && rm cmake-3.16.0-Linux-x86_64.tar.gz
ENV PATH=/home/cmake-3.16.0-Linux-x86_64/bin:$PATH
# Install Python3.6
RUN mkdir -p /root/python_build/ && wget -q https://www.sqlite.org/2018/sqlite-autoconf-3250300.tar.gz && \
tar -zxf sqlite-autoconf-3250300.tar.gz && cd sqlite-autoconf-3250300 && \
./configure -prefix=/usr/local && make -j8 && make install && cd ../ && rm sqlite-autoconf-3250300.tar.gz
RUN wget -q https://www.python.org/ftp/python/3.6.0/Python-3.6.0.tgz && \
tar -xzf Python-3.6.0.tgz && cd Python-3.6.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig && cd .. && rm -rf Python-3.6.0*
# Install Python3.7
RUN wget -q https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz && \
tar -xzf Python-3.7.0.tgz && cd Python-3.7.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig && cd .. && rm -rf Python-3.7.0*
# Install Python3.8
RUN wget -q https://www.python.org/ftp/python/3.8.0/Python-3.8.0.tgz && \
tar -xzf Python-3.8.0.tgz && cd Python-3.8.0 && \
CFLAGS="-Wformat" ./configure --prefix=/usr/local/ --enable-shared > /dev/null && \
make -j8 > /dev/null && make altinstall > /dev/null && ldconfig && cd .. && rm -rf Python-3.8.0*
ENV LD_LIBRARY_PATH=/usr/local/lib:${LD_LIBRARY_PATH}
RUN ln -sf /usr/local/bin/python3.6 /usr/local/bin/python3 && ln -sf /usr/local/bin/python3.6 /usr/bin/python3 && ln -sf /usr/local/bin/pip3.6 /usr/local/bin/pip3 && ln -sf /usr/local/bin/pip3.6 /usr/bin/pip3
RUN rm -r /root/python_build
# Install Go and glide
RUN wget -qO- https://paddle-ci.cdn.bcebos.com/go1.17.2.linux-amd64.tar.gz | \
tar -xz -C /usr/local && \
mkdir /root/go && \
mkdir /root/go/bin && \
mkdir /root/go/src && \
echo "GOROOT=/usr/local/go" >> /root/.bashrc && \
echo "GOPATH=/root/go" >> /root/.bashrc && \
echo "PATH=/usr/local/go/bin:/root/go/bin:$PATH" >> /root/.bashrc
ENV GOROOT=/usr/local/go GOPATH=/root/go
# should not be in the same line with GOROOT definition, otherwise docker build could not find GOROOT.
ENV PATH=usr/local/go/bin:/root/go/bin:${PATH}
# Install TensorRT
# following TensorRT.tar.gz is not the default official one, we do two miny changes:
# 1. Remove the unnecessary files to make the library small. TensorRT.tar.gz only contains include and lib now,
# and its size is only one-third of the official one.
# 2. Manually add ~IPluginFactory() in IPluginFactory class of NvInfer.h, otherwise, it couldn't work in paddle.
# See https://github.com/PaddlePaddle/Paddle/issues/10129 for details.
# Downgrade TensorRT
COPY tools/dockerfiles/build_scripts /build_scripts
RUN bash /build_scripts/install_trt.sh cuda11.2
RUN rm -rf /build_scripts
# git credential to skip password typing
RUN git config --global credential.helper store
# Fix locales to en_US.UTF-8
RUN localedef -i en_US -f UTF-8 en_US.UTF-8
RUN apt-get install libprotobuf-dev -y
# Older versions of patchelf limited the size of the files being processed and were fixed in this pr.
# https://github.com/NixOS/patchelf/commit/ba2695a8110abbc8cc6baf0eea819922ee5007fa
# So install a newer version here.
RUN wget -q https://paddle-ci.cdn.bcebos.com/patchelf_0.10-2_amd64.deb && \
dpkg -i patchelf_0.10-2_amd64.deb
# Configure OpenSSH server. c.f. https://docs.docker.com/engine/examples/running_ssh_service
RUN mkdir /var/run/sshd && echo 'root:root' | chpasswd && sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config && sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config
CMD source ~/.bashrc
# ccache 3.7.9
RUN wget https://paddle-ci.gz.bcebos.com/ccache-3.7.9.tar.gz && \
tar xf ccache-3.7.9.tar.gz && mkdir /usr/local/ccache-3.7.9 && cd ccache-3.7.9 && \
./configure -prefix=/usr/local/ccache-3.7.9 && \
make -j8 && make install && \
ln -s /usr/local/ccache-3.7.9/bin/ccache /usr/local/bin/ccache
RUN python3.8 -m pip install --upgrade pip==21.1.1 requests && \
python3.7 -m pip install --upgrade pip==21.1.1 requests && \
python3.6 -m pip install --upgrade pip==21.1.1 requests
RUN wget https://paddle-serving.bj.bcebos.com/others/centos_ssl.tar && \
tar xf centos_ssl.tar && rm -rf centos_ssl.tar && \
mv libcrypto.so.1.0.2k /usr/lib/libcrypto.so.1.0.2k && mv libssl.so.1.0.2k /usr/lib/libssl.so.1.0.2k && \
ln -sf /usr/lib/libcrypto.so.1.0.2k /usr/lib/libcrypto.so.10 && \
ln -sf /usr/lib/libssl.so.1.0.2k /usr/lib/libssl.so.10 && \
ln -sf /usr/lib/libcrypto.so.10 /usr/lib/libcrypto.so && \
ln -sf /usr/lib/libssl.so.10 /usr/lib/libssl.so
EXPOSE 22
......@@ -83,7 +83,7 @@ RUN ln -sf /usr/local/bin/python3.6 /usr/local/bin/python3 && ln -sf /usr/local/
RUN rm -r /root/python_build
# Install Go and glide
RUN wget -qO- https://dl.google.com/go/go1.14.linux-amd64.tar.gz | \
RUN wget -qO- https://paddle-ci.cdn.bcebos.com/go1.17.2.linux-amd64.tar.gz | \
tar -xz -C /usr/local && \
mkdir /root/go && \
mkdir /root/go/bin && \
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册