提交 4ba9a152 编写于 作者: G guru4elephant

add reader

上级 13b9f2cf
......@@ -11,3 +11,4 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .reader.chinese_bert_reader import ChineseBertReader
#coding:utf-8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Mask, padding and batching."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
def prepare_batch_data(insts,
total_token_num,
max_seq_len=128,
pad_id=None,
cls_id=None,
sep_id=None,
mask_id=None,
return_input_mask=True,
return_max_len=True,
return_num_token=False):
"""
1. generate Tensor of data
2. generate Tensor of position
3. generate self attention mask, [shape: batch_size * max_len * max_len]
"""
batch_src_ids = [inst[0] for inst in insts]
batch_sent_ids = [inst[1] for inst in insts]
batch_pos_ids = [inst[2] for inst in insts]
labels_list = []
# compatible with squad, whose example includes start/end positions,
# or unique id
for i in range(3, len(insts[0]), 1):
labels = [inst[i] for inst in insts]
labels = np.array(labels).astype("int64").reshape([-1, 1])
labels_list.append(labels)
out = batch_src_ids
# Second step: padding
src_id, self_input_mask = pad_batch_data(
out, pad_idx=pad_id, max_seq_len=max_seq_len, return_input_mask=True)
pos_id = pad_batch_data(
batch_pos_ids,
pad_idx=pad_id,
max_seq_len=max_seq_len,
return_pos=False,
return_input_mask=False)
sent_id = pad_batch_data(
batch_sent_ids,
pad_idx=pad_id,
max_seq_len=max_seq_len,
return_pos=False,
return_input_mask=False)
return_list = [src_id, pos_id, sent_id, self_input_mask] + labels_list
return return_list if len(return_list) > 1 else return_list[0]
def pad_batch_data(insts,
pad_idx=0,
max_seq_len=128,
return_pos=False,
return_input_mask=False,
return_max_len=False,
return_num_token=False,
return_seq_lens=False):
"""
Pad the instances to the max sequence length in batch, and generate the
corresponding position data and input mask.
"""
return_list = []
#max_len = max(len(inst) for inst in insts)
max_len = max_seq_len
# Any token included in dict can be used to pad, since the paddings' loss
# will be masked out by weights and make no effect on parameter gradients.
inst_data = np.array([
list(inst) + list([pad_idx] * (max_len - len(inst))) for inst in insts
])
return_list += [inst_data.astype("int64").reshape([-1, max_len, 1])]
# position data
if return_pos:
inst_pos = np.array([
list(range(0, len(inst))) + [pad_idx] * (max_len - len(inst))
for inst in insts
])
return_list += [inst_pos.astype("int64").reshape([-1, max_len, 1])]
if return_input_mask:
# This is used to avoid attention on paddings.
input_mask_data = np.array(
[[1] * len(inst) + [0] * (max_len - len(inst)) for inst in insts])
input_mask_data = np.expand_dims(input_mask_data, axis=-1)
return_list += [input_mask_data.astype("float32")]
if return_max_len:
return_list += [max_len]
if return_num_token:
num_token = 0
for inst in insts:
num_token += len(inst)
return_list += [num_token]
if return_seq_lens:
seq_lens = np.array([len(inst) for inst in insts])
return_list += [seq_lens.astype("int64").reshape([-1, 1])]
return return_list if len(return_list) > 1 else return_list[0]
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .reader import ReaderBase
class BertBaseReader(ReaderBase):
def __init__(self):
super(BertBaseReader, self).__init__()
pass
def process(self, line):
super(BertBaseReader, self).process(line)
pass
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# coding=utf-8
from .bert_base_reader import BertBaseReader
from .batching import pad_batch_data
from .tokenization import FullTokenizer, convert_to_unicode
class ChineseBertReader(BertBaseReader):
"""
ChineseBertReader handles the most traditional Chinese Bert
preprocessing, a user can define the vocab file through initialization
Examples:
from paddle_serving_app import ChineseBertReader
line = ["this is China"]
reader = ChineseBertReader()
reader.process(line[0])
"""
def __init__(self, args={}):
super(ChineseBertReader, self).__init__()
vocab_file = ""
if "vocab_file" in args:
vocab_file = args["vocab_file"]
else:
vocab_file = self._download_or_not()
self.tokenizer = FullTokenizer(vocab_file=vocab_file)
if "max_seq_len" in args:
self.max_seq_len = args["max_seq_len"]
else:
self.max_seq_len = 20
self.vocab = self.tokenizer.vocab
self.pad_id = self.vocab["[PAD]"]
self.cls_id = self.vocab["[CLS]"]
self.sep_id = self.vocab["[SEP]"]
self.mask_id = self.vocab["[MASK]"]
self.feed_keys = [
"input_ids", "position_ids", "segment_ids", "input_mask"
]
"""
inner function
"""
def _download_or_not(self):
import os
import paddle_serving_app
module_path = os.path.dirname(paddle_serving_app.__file__)
full_path = "{}/tmp/chinese_bert".format(module_path)
os.system("mkdir -p {}".format(full_path))
if os.path.exists("{}/vocab.txt".format(full_path)):
pass
else:
url = "https://paddle-serving.bj.bcebos.com/reader/chinese_bert/vocab.txt"
r = os.system("wget --no-check-certificate " + url)
os.system("mv vocab.txt {}".format(full_path))
if r != 0:
raise SystemExit('Download failed, please check your network')
return "{}/vocab.txt".format(full_path)
"""
inner function
"""
def _pad_batch(self, token_ids, text_type_ids, position_ids):
batch_token_ids = [token_ids]
batch_text_type_ids = [text_type_ids]
batch_position_ids = [position_ids]
padded_token_ids, input_mask = pad_batch_data(
batch_token_ids,
max_seq_len=self.max_seq_len,
pad_idx=self.pad_id,
return_input_mask=True)
padded_text_type_ids = pad_batch_data(
batch_text_type_ids,
max_seq_len=self.max_seq_len,
pad_idx=self.pad_id)
padded_position_ids = pad_batch_data(
batch_position_ids,
max_seq_len=self.max_seq_len,
pad_idx=self.pad_id)
return padded_token_ids, padded_position_ids, padded_text_type_ids, input_mask
"""
process function deals with a raw Chinese string as a sentence
this funtion returns a feed_dict
default key of the returned feed_dict: input_ids, position_ids, segment_ids, input_mask
"""
def process(self, line):
text_a = convert_to_unicode(line)
tokens_a = self.tokenizer.tokenize(text_a)
if len(tokens_a) > self.max_seq_len - 2:
tokens_a = tokens_a[0:(self.max_seq_len - 2)]
tokens = []
text_type_ids = []
tokens.append("[CLS]")
text_type_ids.append(0)
for token in tokens_a:
tokens.append(token)
text_type_ids.append(0)
token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
position_ids = list(range(len(token_ids)))
p_token_ids, p_pos_ids, p_text_type_ids, input_mask = \
self._pad_batch(token_ids, text_type_ids, position_ids)
feed_result = {
self.feed_keys[0]: p_token_ids.reshape(-1).tolist(),
self.feed_keys[1]: p_pos_ids.reshape(-1).tolist(),
self.feed_keys[2]: p_text_type_ids.reshape(-1).tolist(),
self.feed_keys[3]: input_mask.reshape(-1).tolist()
}
return feed_result
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
class ReaderBase(object):
def __init__(self):
self.feed_keys = []
def set_feed_keys(self, keys):
self.feed_keys = keys
def get_feed_keys(self):
return self.feed_keys
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import io
import unicodedata
import six
import sentencepiece as spm
import pickle
def convert_to_unicode(text): # pylint: disable=doc-string-with-all-args
"""Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
if six.PY3:
if isinstance(text, str):
return text
elif isinstance(text, bytes):
return text.decode("utf-8", "ignore")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
elif six.PY2:
if isinstance(text, str):
return text.decode("utf-8", "ignore")
elif isinstance(text, unicode): # noqa
return text
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
else:
raise ValueError("Not running on Python2 or Python 3?")
def printable_text(text): # pylint: disable=doc-string-with-all-args
"""Returns text encoded in a way suitable for print or `tf.logging`."""
# These functions want `str` for both Python2 and Python3, but in one case
# it's a Unicode string and in the other it's a byte string.
if six.PY3:
if isinstance(text, str):
return text
elif isinstance(text, bytes):
return text.decode("utf-8", "ignore")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
elif six.PY2:
if isinstance(text, str):
return text
elif isinstance(text, unicode): # noqa
return text.encode("utf-8")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
else:
raise ValueError("Not running on Python2 or Python 3?")
def load_vocab(vocab_file): # pylint: disable=doc-string-with-all-args, doc-string-with-returns
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
fin = io.open(vocab_file, "r", encoding="UTF-8")
for num, line in enumerate(fin):
items = convert_to_unicode(line.strip()).split("\t")
if len(items) > 2:
break
token = items[0]
index = items[1] if len(items) == 2 else num
token = token.strip()
vocab[token] = int(index)
fin.close()
return vocab
def convert_by_vocab(vocab, items):
"""Converts a sequence of [tokens|ids] using the vocab."""
output = []
for item in items:
output.append(vocab[item])
return output
def convert_tokens_to_ids(vocab, tokens):
return convert_by_vocab(vocab, tokens)
def convert_ids_to_tokens(inv_vocab, ids):
return convert_by_vocab(inv_vocab, ids)
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a peice of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
class FullTokenizer(object):
"""Runs end-to-end tokenziation."""
def __init__(self,
vocab_file,
do_lower_case=True,
use_sentence_piece_vocab=False):
self.vocab = load_vocab(vocab_file)
self.inv_vocab = {v: k for k, v in self.vocab.items()}
self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
self.use_sentence_piece_vocab = use_sentence_piece_vocab
self.wordpiece_tokenizer = WordpieceTokenizer(
vocab=self.vocab,
use_sentence_piece_vocab=self.use_sentence_piece_vocab)
def tokenize(self, text):
split_tokens = []
for token in self.basic_tokenizer.tokenize(text):
for sub_token in self.wordpiece_tokenizer.tokenize(token):
split_tokens.append(sub_token)
return split_tokens
def convert_tokens_to_ids(self, tokens):
return convert_by_vocab(self.vocab, tokens)
def convert_ids_to_tokens(self, ids):
return convert_by_vocab(self.inv_vocab, ids)
class CharTokenizer(object):
"""Runs end-to-end tokenziation."""
def __init__(self, vocab_file, do_lower_case=True):
self.vocab = load_vocab(vocab_file)
self.inv_vocab = {v: k for k, v in self.vocab.items()}
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
def tokenize(self, text):
split_tokens = []
for token in text.lower().split(" "):
for sub_token in self.wordpiece_tokenizer.tokenize(token):
split_tokens.append(sub_token)
return split_tokens
def convert_tokens_to_ids(self, tokens):
return convert_by_vocab(self.vocab, tokens)
def convert_ids_to_tokens(self, ids):
return convert_by_vocab(self.inv_vocab, ids)
class WSSPTokenizer(object): # pylint: disable=doc-string-missing
def __init__(self, vocab_file, sp_model_dir, word_dict, ws=True,
lower=True):
self.vocab = load_vocab(vocab_file)
self.inv_vocab = {v: k for k, v in self.vocab.items()}
self.ws = ws
self.lower = lower
self.dict = pickle.load(open(word_dict, 'rb'))
self.sp_model = spm.SentencePieceProcessor()
self.window_size = 5
self.sp_model.Load(sp_model_dir)
def cut(self, chars): # pylint: disable=doc-string-missing
words = []
idx = 0
while idx < len(chars):
matched = False
for i in range(self.window_size, 0, -1):
cand = chars[idx:idx + i]
if cand in self.dict:
words.append(cand)
matched = True
break
if not matched:
i = 1
words.append(chars[idx])
idx += i
return words
def tokenize(self, text, unk_token="[UNK]"): # pylint: disable=doc-string-missing
text = convert_to_unicode(text)
if self.ws:
text = [s for s in self.cut(text) if s != ' ']
else:
text = text.split(' ')
if self.lower:
text = [s.lower() for s in text]
text = ' '.join(text)
tokens = self.sp_model.EncodeAsPieces(text)
in_vocab_tokens = []
for token in tokens:
if token in self.vocab:
in_vocab_tokens.append(token)
else:
in_vocab_tokens.append(unk_token)
return in_vocab_tokens
def convert_tokens_to_ids(self, tokens):
return convert_by_vocab(self.vocab, tokens)
def convert_ids_to_tokens(self, ids):
return convert_by_vocab(self.inv_vocab, ids)
class BasicTokenizer(object):
"""Runs basic tokenization (punctuation splitting, lower casing, etc.)."""
def __init__(self, do_lower_case=True):
"""Constructs a BasicTokenizer.
Args:
do_lower_case: Whether to lower case the input.
"""
self.do_lower_case = do_lower_case
def tokenize(self, text): # pylint: disable=doc-string-with-all-args, doc-string-with-returns
"""Tokenizes a piece of text."""
text = convert_to_unicode(text)
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
text = self._tokenize_chinese_chars(text)
orig_tokens = whitespace_tokenize(text)
split_tokens = []
for token in orig_tokens:
if self.do_lower_case:
token = token.lower()
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text):
"""Splits punctuation on a piece of text."""
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if ((cp >= 0x4E00 and cp <= 0x9FFF) or #
(cp >= 0x3400 and cp <= 0x4DBF) or #
(cp >= 0x20000 and cp <= 0x2A6DF) or #
(cp >= 0x2A700 and cp <= 0x2B73F) or #
(cp >= 0x2B740 and cp <= 0x2B81F) or #
(cp >= 0x2B820 and cp <= 0x2CEAF) or
(cp >= 0xF900 and cp <= 0xFAFF) or #
(cp >= 0x2F800 and cp <= 0x2FA1F)): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xfffd or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
class WordpieceTokenizer(object):
"""Runs WordPiece tokenziation."""
def __init__(self,
vocab,
unk_token="[UNK]",
max_input_chars_per_word=100,
use_sentence_piece_vocab=False):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
self.use_sentence_piece_vocab = use_sentence_piece_vocab
def tokenize(self, text): # pylint: disable=doc-string-with-all-args
"""Tokenizes a piece of text into its word pieces.
This uses a greedy longest-match-first algorithm to perform tokenization
using the given vocabulary.
For example:
input = "unaffable"
output = ["un", "##aff", "##able"]
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through `BasicTokenizer.
Returns:
A list of wordpiece tokens.
"""
text = convert_to_unicode(text)
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start == 0 and self.use_sentence_piece_vocab:
substr = u'\u2581' + substr
if start > 0 and not self.use_sentence_piece_vocab:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
def _is_whitespace(char):
"""Checks whether `chars` is a whitespace character."""
# \t, \n, and \r are technically contorl characters but we treat them
# as whitespace since they are generally considered as such.
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
cat = unicodedata.category(char)
if cat == "Zs":
return True
return False
def _is_control(char):
"""Checks whether `chars` is a control character."""
# These are technically control characters but we count them as whitespace
# characters.
if char == "\t" or char == "\n" or char == "\r":
return False
cat = unicodedata.category(char)
if cat.startswith("C"):
return True
return False
def _is_punctuation(char):
"""Checks whether `chars` is a punctuation character."""
cp = ord(char)
# We treat all non-letter/number ASCII as punctuation.
# Characters such as "^", "$", and "`" are not in the Unicode
# Punctuation class but we treat them as punctuation anyways, for
# consistency.
if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
(cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
return True
cat = unicodedata.category(char)
if cat.startswith("P"):
return True
return False
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Paddle Serving App version string """
serving_app_version = "0.0.1"
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册