提交 4753711f 编写于 作者: W wangjiawei04

add more compile dependency

上级 bf0d7fef
# Faster RCNN HRNet model on Paddle Serving
([简体中文](./README_CN.md)|English)
### Get The Faster RCNN HRNet Model
```
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/2.0/faster_rcnn_hrnetv2p_w18_1x.tar
```
### Start the service
```
tar xf faster_rcnn_hrnetv2p_w18_1x.tar
python -m paddle_serving_server_gpu.serve --model serving_server --port 9494 --gpu_ids 0
```
This model support TensorRT, if you want a faster inference, please use `--use_trt`.
### Prediction
```
python test_client.py 000000570688.jpg
```
# 使用Paddle Serving部署Faster RCNN HRNet模型
(简体中文|[English](./README.md))
## 获得Faster RCNN HRNet模型
```
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/2.0/faster_rcnn_hrnetv2p_w18_1x.tar
```
### 启动服务
```
tar xf faster_rcnn_hrnetv2p_w18_1x.tar
python -m paddle_serving_server_gpu.serve --model serving_server --port 9494 --gpu_ids 0
```
该模型支持TensorRT,如果想要更快的预测速度,可以开启`--use_trt`选项。
### 执行预测
```
python test_client.py 000000570688.jpg
```
person
bicycle
car
motorcycle
airplane
bus
train
truck
boat
traffic light
fire hydrant
stop sign
parking meter
bench
bird
cat
dog
horse
sheep
cow
elephant
bear
zebra
giraffe
backpack
umbrella
handbag
tie
suitcase
frisbee
skis
snowboard
sports ball
kite
baseball bat
baseball glove
skateboard
surfboard
tennis racket
bottle
wine glass
cup
fork
knife
spoon
bowl
banana
apple
sandwich
orange
broccoli
carrot
hot dog
pizza
donut
cake
chair
couch
potted plant
bed
dining table
toilet
tv
laptop
mouse
remote
keyboard
cell phone
microwave
oven
toaster
sink
refrigerator
book
clock
vase
scissors
teddy bear
hair drier
toothbrush
from paddle_serving_client import Client
from paddle_serving_app.reader import *
import sys
import numpy as np
preprocess = Sequential([
File2Image(), BGR2RGB(), Div(255.0),
Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], False),
Resize(640, 640), Transpose((2, 0, 1))
])
postprocess = RCNNPostprocess("label_list.txt", "output")
client = Client()
client.load_client_config("serving_client/serving_client_conf.prototxt")
client.connect(['127.0.0.1:9494'])
im = preprocess(sys.argv[1])
fetch_map = client.predict(
feed={
"image": im,
"im_info": np.array(list(im.shape[1:]) + [1.0]),
"im_shape": np.array(list(im.shape[1:]) + [1.0])
},
fetch=["multiclass_nms_0.tmp_0"],
batch=False)
print(fetch_map)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册