未验证 提交 4337809b 编写于 作者: T TeslaZhao 提交者: GitHub

Merge pull request #1676 from felixhjh/pipeline_encrypt_model

add pipeline encrypt demo
# Imagenet Pipeline WebService
This document will takes Imagenet service as an example to introduce how to use Pipeline WebService.
## Get model
```
sh get_model.sh
python encrypt.py
```
## Start server
```
python -m paddle_serving_server.serve --model encrypt_server/ --port 9400 --encryption_rpc_port 9401 --use_encryption_model &
python web_service.py &>log.txt &
```
## client test
```
python http_client.py
```
if you configure the api gateway, you can use `https_client.py`
# Imagenet Pipeline WebService
这里以 Imagenet 服务为例来介绍 Pipeline WebService 的使用。
## 获取模型
```
sh get_model.sh
python encrypt.py
```
## 启动服务
```
python -m paddle_serving_server.serve --model encrypt_server/ --port 9400 --encryption_rpc_port 9401 --use_encryption_model &
python web_service.py &>log.txt &
```
## 测试
```
python http_client.py
```
如果您已经配置好了api gateway, 您可以使用 `https_client.py`
~
#worker_num, 最大并发数。当build_dag_each_worker=True时, 框架会创建worker_num个进程,每个进程内构建grpcSever和DAG
##当build_dag_each_worker=False时,框架会设置主线程grpc线程池的max_workers=worker_num
worker_num: 1
#http端口, rpc_port和http_port不允许同时为空。当rpc_port可用且http_port为空时,不自动生成http_port
http_port: 18080
rpc_port: 9993
dag:
#op资源类型, True, 为线程模型;False,为进程模型
is_thread_op: False
op:
imagenet:
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
concurrency: 1
client_type: brpc
retry: 1
timeout: 3000
server_endpoints: ["127.0.0.1:9400"]
client_config: "encrypt_client"
fetch_list: ["save_infer_model/scale_0.tmp_0"]
batch_size: 1
auto_batching_timeout: 2000
use_encryption_model: True
encryption_key: "./key"
from paddle_serving_client.io import inference_model_to_serving
def serving_encryption():
inference_model_to_serving(
dirname="./DarkNet53/ppcls_model/",
model_filename="__model__",
params_filename="./__params__",
serving_server="encrypt_server",
serving_client="encrypt_client",
encryption=True)
if __name__ == "__main__":
serving_encryption()
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/model/DarkNet53.tar
tar -xf DarkNet53.tar
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/imagenet-example/image_data.tar.gz
tar -xzvf image_data.tar.gz
import numpy as np
import requests
import json
import cv2
import base64
import os
def cv2_to_base64(image):
return base64.b64encode(image).decode('utf8')
if __name__ == "__main__":
url = "http://127.0.0.1:18080/imagenet/prediction"
with open(os.path.join(".", "daisy.jpg"), 'rb') as file:
image_data1 = file.read()
image = cv2_to_base64(image_data1)
data = {"key": ["image"], "value": [image]}
for i in range(1):
r = requests.post(url=url, data=json.dumps(data))
print(r.json())
import numpy as np
import requests
import json
import cv2
import base64
import os
def cv2_to_base64(image):
return base64.b64encode(image).decode('utf8')
if __name__ == "__main__":
url = "https://10.21.8.132:8443/image-clas/imagenet/prediction"
with open(os.path.join(".", "daisy.jpg"), 'rb') as file:
image_data1 = file.read()
image = cv2_to_base64(image_data1)
headers = {"Content-Type":"application/json", "apikey":"BlfvO08Z9mQpFjcMagl2dxOIA8h2UVdp", "X-INSTANCE-ID" : "kong_ins10"}
data = {"key": ["image"], "value": [image]}
for i in range(1):
r = requests.post(url=url, headers=headers, data=json.dumps(data),verify=False)
print(r.json())
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from paddle_serving_app.reader import Sequential, URL2Image, Resize, CenterCrop, RGB2BGR, Transpose, Div, Normalize, Base64ToImage
from paddle_serving_server.web_service import WebService, Op
import logging
import numpy as np
import base64, cv2
class ImagenetOp(Op):
def init_op(self):
self.seq = Sequential([
Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225],
True)
])
self.label_dict = {}
label_idx = 0
with open("imagenet.label") as fin:
for line in fin:
self.label_dict[label_idx] = line.strip()
label_idx += 1
def preprocess(self, input_dicts, data_id, log_id):
(_, input_dict), = input_dicts.items()
batch_size = len(input_dict.keys())
imgs = []
for key in input_dict.keys():
data = base64.b64decode(input_dict[key].encode('utf8'))
data = np.fromstring(data, np.uint8)
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
img = self.seq(im)
imgs.append(img[np.newaxis, :].copy())
input_imgs = np.concatenate(imgs, axis=0)
return {"image": input_imgs}, False, None, ""
def postprocess(self, input_dicts, fetch_dict, data_id=0, log_id=0):
score_list = fetch_dict["save_infer_model/scale_0.tmp_0"]
result = {"label": [], "prob": []}
for score in score_list:
score = score.tolist()
max_score = max(score)
result["label"].append(self.label_dict[score.index(max_score)]
.strip().replace(",", ""))
result["prob"].append(max_score)
result["label"] = str(result["label"])
result["prob"] = str(result["prob"])
return result, None, ""
class ImageService(WebService):
def get_pipeline_response(self, read_op):
image_op = ImagenetOp(name="imagenet", input_ops=[read_op])
return image_op
uci_service = ImageService(name="imagenet")
uci_service.prepare_pipeline_config("config.yml")
uci_service.run_service()
......@@ -184,6 +184,12 @@ def serve_args():
default=False,
action="store_true",
help="Use encryption model")
parser.add_argument(
"--encryption_rpc_port",
type=int,
required=False,
default=12000,
help="Port of encryption model, only valid for arg.use_encryption_model")
parser.add_argument(
"--use_trt", default=False, action="store_true", help="Use TensorRT")
parser.add_argument(
......@@ -352,8 +358,11 @@ def start_multi_card(args, serving_port=None): # pylint: disable=doc-string-mis
class MainService(BaseHTTPRequestHandler):
#def __init__(self):
# print("MainService ___init________\n")
def get_available_port(self):
default_port = 12000
global encryption_rpc_port
default_port = encryption_rpc_port
for i in range(1000):
if port_is_available(default_port + i):
return default_port + i
......@@ -553,7 +562,8 @@ if __name__ == "__main__":
p_flag = False
p = None
serving_port = 0
server = HTTPServer(('0.0.0.0', int(args.port)), MainService)
encryption_rpc_port = args.encryption_rpc_port
server = HTTPServer(('localhost', int(args.port)), MainService)
print(
'Starting encryption server, waiting for key from client, use <Ctrl-C> to stop'
)
......
......@@ -102,6 +102,8 @@ class Op(object):
self._retry = max(1, retry)
self._batch_size = batch_size
self._auto_batching_timeout = auto_batching_timeout
self._use_encryption_model = None
self._encryption_key = ""
self._input = None
self._outputs = []
......@@ -161,6 +163,11 @@ class Op(object):
self._fetch_names = conf.get("fetch_list")
if self._client_config is None:
self._client_config = conf.get("client_config")
if self._use_encryption_model is None:
print ("config use_encryption model here", conf.get("use_encryption_model"))
self._use_encryption_model = conf.get("use_encryption_model")
if self._encryption_key is None or self._encryption_key=="":
self._encryption_key = conf.get("encryption_key")
if self._timeout is None:
self._timeout = conf["timeout"]
if self._timeout > 0:
......@@ -409,7 +416,12 @@ class Op(object):
self._fetch_names = client.fetch_names_
_LOGGER.info("Op({}) has no fetch name set. So fetch all vars")
if self.client_type != "local_predictor":
client.connect(server_endpoints)
if self._use_encryption_model is None or self._use_encryption_model is False:
client.connect(server_endpoints)
else:
print("connect to encryption rpc client")
client.use_key(self._encryption_key)
client.connect(server_endpoints, encryption=True)
_LOGGER.info("init_client, feed_list:{}, fetch_list: {}".format(self.right_feed_names, self.right_fetch_names))
return client
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册