未验证 提交 3f50343e 编写于 作者: J Jiawei Wang 提交者: GitHub

Merge branch 'develop' into grpc_update

......@@ -70,10 +70,13 @@ int GeneralDistKVInferOp::inference() {
<< ") Failed mutable depended argument, op:" << pre_name;
return -1;
}
Timer timeline;
timeline.Start();
const TensorVector *in = &input_blob->tensor_vector;
TensorVector *out = &output_blob->tensor_vector;
std::vector<uint64_t> keys;
std::vector<uint64_t> unique_keys;
std::unordered_map<uint64_t, rec::mcube::CubeValue*> key_map;
std::vector<rec::mcube::CubeValue> values;
int sparse_count = 0; // sparse inputs counts, sparse would seek cube
int dense_count = 0; // dense inputs counts, dense would directly call paddle infer
......@@ -94,7 +97,8 @@ int GeneralDistKVInferOp::inference() {
dataptr_size_pairs.push_back(std::make_pair(data_ptr, elem_num));
}
keys.resize(key_len);
VLOG(3) << "(logid=" << log_id << ") cube number of keys to look up: " << key_len;
unique_keys.resize(key_len);
int key_idx = 0;
for (size_t i = 0; i < dataptr_size_pairs.size(); ++i) {
std::copy(dataptr_size_pairs[i].first,
......@@ -102,20 +106,35 @@ int GeneralDistKVInferOp::inference() {
keys.begin() + key_idx);
key_idx += dataptr_size_pairs[i].second;
}
int unique_keys_count = 0;
for (size_t i = 0; i < keys.size(); ++i) {
if (key_map.find(keys[i]) == key_map.end()) {
key_map[keys[i]] = nullptr;
unique_keys[unique_keys_count++] = keys[i];
}
}
unique_keys.resize(unique_keys_count);
VLOG(1) << "(logid=" << log_id << ") cube number of keys to look up: " << key_len << " uniq keys: "<< unique_keys_count;
rec::mcube::CubeAPI *cube = rec::mcube::CubeAPI::instance();
std::vector<std::string> table_names = cube->get_table_names();
if (table_names.size() == 0) {
LOG(ERROR) << "cube init error or cube config not given.";
return -1;
}
// gather keys and seek cube servers, put results in values
int ret = cube->seek(table_names[0], keys, &values);
VLOG(3) << "(logid=" << log_id << ") cube seek status: " << ret;
int64_t seek_start = timeline.TimeStampUS();
int ret = cube->seek(table_names[0], unique_keys, &values);
int64_t seek_end = timeline.TimeStampUS();
VLOG(2) << "(logid=" << log_id << ") cube seek status: " << ret << " seek_time: " << seek_end - seek_start;
for (size_t i = 0; i < unique_keys.size(); ++i) {
key_map[unique_keys[i]] = &values[i];
}
if (values.size() != keys.size() || values[0].buff.size() == 0) {
LOG(ERROR) << "cube value return null";
}
// EMBEDDING_SIZE means the length of sparse vector, user can define length here.
size_t EMBEDDING_SIZE = values[0].buff.size() / sizeof(float);
//size_t EMBEDDING_SIZE = values[0].buff.size() / sizeof(float);
size_t EMBEDDING_SIZE = (values[0].buff.size() - 10) / sizeof(float);
TensorVector sparse_out;
sparse_out.resize(sparse_count);
TensorVector dense_out;
......@@ -127,7 +146,9 @@ int GeneralDistKVInferOp::inference() {
baidu::paddle_serving::predictor::Resource &resource =
baidu::paddle_serving::predictor::Resource::instance();
std::shared_ptr<PaddleGeneralModelConfig> model_config = resource.get_general_model_config().front();
//copy data to tnsor
int cube_key_found = 0;
int cube_key_miss = 0;
for (size_t i = 0; i < in->size(); ++i) {
if (in->at(i).dtype != paddle::PaddleDType::INT64) {
dense_out[dense_idx] = in->at(i);
......@@ -150,20 +171,39 @@ int GeneralDistKVInferOp::inference() {
float *dst_ptr = static_cast<float *>(sparse_out[sparse_idx].data.data());
for (int x = 0; x < sparse_out[sparse_idx].lod[0].back(); ++x) {
float *data_ptr = dst_ptr + x * EMBEDDING_SIZE;
memcpy(data_ptr,
values[cube_val_idx].buff.data(),
values[cube_val_idx].buff.size());
cube_val_idx++;
uint64_t cur_key = keys[cube_val_idx];
rec::mcube::CubeValue* cur_val = key_map[cur_key];
if (cur_val->buff.size() == 0) {
memset(data_ptr, (float)0.0, sizeof(float) * EMBEDDING_SIZE);
VLOG(3) << "(logid=" << log_id << ") cube key not found: " << keys[cube_val_idx];
++cube_key_miss;
++cube_val_idx;
continue;
}
VLOG(2) << "(logid=" << log_id << ") key: " << keys[cube_val_idx] << " , cube value len:" << cur_val->buff.size();
memcpy(data_ptr, cur_val->buff.data(), cur_val->buff.size());
//VLOG(3) << keys[cube_val_idx] << ":" << data_ptr[0] << ", " << data_ptr[1] << ", " <<data_ptr[2] << ", " <<data_ptr[3] << ", " <<data_ptr[4] << ", " <<data_ptr[5] << ", " <<data_ptr[6] << ", " <<data_ptr[7] << ", " <<data_ptr[8];
++cube_key_found;
++cube_val_idx;
}
++sparse_idx;
}
VLOG(3) << "(logid=" << log_id << ") sparse tensor load success.";
bool cube_fail = (cube_key_found == 0);
if (cube_fail) {
LOG(WARNING) << "(logid=" << log_id << ") cube seek fail";
//CopyBlobInfo(input_blob, output_blob);
//return 0;
}
VLOG(2) << "(logid=" << log_id << ") cube key found: " << cube_key_found << " , cube key miss: " << cube_key_miss;
VLOG(2) << "(logid=" << log_id << ") sparse tensor load success.";
timeline.Pause();
VLOG(2) << "dist kv, cube and datacopy time: " << timeline.ElapsedUS();
TensorVector infer_in;
infer_in.insert(infer_in.end(), dense_out.begin(), dense_out.end());
infer_in.insert(infer_in.end(), sparse_out.begin(), sparse_out.end());
int batch_size = input_blob->_batch_size;
output_blob->_batch_size = batch_size;
Timer timeline;
int64_t start = timeline.TimeStampUS();
timeline.Start();
// call paddle inference here
......@@ -173,7 +213,12 @@ int GeneralDistKVInferOp::inference() {
return -1;
}
int64_t end = timeline.TimeStampUS();
if (cube_fail) {
float *out_ptr = static_cast<float*>(out->at(0).data.data());
out_ptr[0] = 0.0;
}
timeline.Pause();
VLOG(2) << "dist kv, pure paddle infer time: " << timeline.ElapsedUS();
CopyBlobInfo(input_blob, output_blob);
AddBlobInfo(output_blob, start);
AddBlobInfo(output_blob, end);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册