Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
3ec69834
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3ec69834
编写于
7月 20, 2020
作者:
B
barrierye
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
analyse
上级
46d5d9ef
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
324 addition
and
0 deletion
+324
-0
python/pipeline/analyse.py
python/pipeline/analyse.py
+324
-0
未找到文件。
python/pipeline/analyse.py
0 → 100644
浏览文件 @
3ec69834
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import
json
import
copy
import
re
import
logging
_LOGGER
=
logging
.
getLogger
()
class
Analyst
(
object
):
def
__init__
(
self
,
profile_file
):
self
.
_profile_file
=
profile_file
self
.
_trace
=
None
self
.
ave_call
=
None
self
.
ave_prepack
=
None
self
.
ave_postpack
=
None
self
.
op_analyst
=
None
self
.
start_time
=
None
self
.
end_time
=
None
def
_prase_line
(
self
,
pid_str
,
time_str
,
counter
):
pid
=
pid_str
.
split
(
":"
)[
1
]
event_list
=
time_str
.
split
(
" "
)
trace_list
=
[]
for
event
in
event_list
:
name
,
ts
=
event
.
split
(
":"
)
name_list
=
name
.
split
(
"_"
)
ph
=
"B"
if
(
name_list
[
-
1
]
==
"0"
)
else
"E"
if
len
(
name_list
)
==
2
:
name
=
name_list
[
0
]
else
:
name
=
"_"
.
join
(
name_list
[:
-
1
])
name_list
=
name
.
split
(
"#"
)
if
len
(
name_list
)
>
1
:
tid
=
name_list
[
-
1
]
name
=
"#"
.
join
(
name_list
[:
-
1
])
else
:
tid
=
0
event_dict
=
{}
event_dict
[
"name"
]
=
name
event_dict
[
"tid"
]
=
tid
event_dict
[
"pid"
]
=
pid
event_dict
[
"ts"
]
=
ts
event_dict
[
"ph"
]
=
ph
trace_list
.
append
(
event_dict
)
return
trace_list
def
get_trace
(
self
):
if
self
.
_trace
is
not
None
:
return
self
.
_trace
all_list
=
[]
counter
=
0
with
open
(
self
.
_profile_file
)
as
f
:
for
line
in
f
.
readlines
():
line
=
line
.
strip
().
split
(
"
\t
"
)
if
line
[
0
]
==
"PROFILE"
:
trace_list
=
self
.
_prase_line
(
line
[
1
],
line
[
2
],
counter
)
counter
+=
1
for
trace
in
trace_list
:
all_list
.
append
(
trace
)
self
.
_trace
=
all_list
return
self
.
_trace
def
save_trace
(
self
,
trace_file
):
self
.
get_trace
()
trace
=
json
.
dumps
(
self
.
_trace
,
indent
=
2
,
separators
=
(
','
,
':'
))
with
open
(
trace_file
,
"w"
)
as
f
:
f
.
write
(
trace
)
def
print_profile
(
self
):
self
.
get_profile
()
print
(
"graph engine call: {}"
.
format
(
self
.
ave_call
))
print
(
"rpc prepack: {}"
.
format
(
self
.
ave_prepack
))
print
(
"rpc postpack: {}"
.
format
(
self
.
ave_postpack
))
print
(
"OP: {}"
.
format
(
self
.
op_analyst
))
def
get_op_analyst
(
self
):
self
.
get_profile
()
return
self
.
op_analyst
def
get_profile
(
self
):
if
self
.
ave_call
is
not
None
and
\
self
.
ave_prepack
is
not
None
and
\
self
.
ave_postpack
is
not
None
and
\
self
.
op_analyst
is
not
None
:
return
(
self
.
ave_call
,
self
.
ave_prepack
,
self
.
ave_postpack
,
self
.
op_analyst
)
trace
=
self
.
get_trace
()
time_dict
=
{}
time_list_dict
=
{}
start
,
end
=
None
,
None
for
event
in
trace
:
name
=
"{}#{}"
.
format
(
event
[
"name"
],
event
[
"tid"
])
event_t
=
int
(
event
[
"ts"
])
if
name
in
time_dict
:
ts
=
event_t
-
time_dict
.
pop
(
name
)
ts
=
ts
/
1e3
# ms
if
name
not
in
time_list_dict
:
time_list_dict
[
name
]
=
[]
time_list_dict
[
name
].
append
(
ts
)
else
:
time_dict
[
name
]
=
event_t
if
start
is
None
:
start
=
event_t
elif
start
>
event_t
:
start
=
event_t
if
end
is
None
:
end
=
event_t
elif
end
<
event_t
:
end
=
event_t
self
.
start_time
=
start
self
.
end_time
=
end
op_analyst
=
OpAnalyst
(
start
,
end
)
# reduce prepack_n, postpack_n, call_n
pat_prepack
=
re
.
compile
(
r
"prepack_\d+#@G"
)
prepack_time_list
=
[]
pat_postpack
=
re
.
compile
(
r
"postpack_\d+#@G"
)
postpack_time_list
=
[]
pat_call
=
re
.
compile
(
r
"call_\d+#DAG"
)
call_time_list
=
[]
for
name
in
time_list_dict
:
if
pat_prepack
.
match
(
name
):
prepack_time_list
.
extend
(
time_list_dict
[
name
])
elif
pat_postpack
.
match
(
name
):
postpack_time_list
.
extend
(
time_list_dict
[
name
])
elif
pat_call
.
match
(
name
):
call_time_list
.
extend
(
time_list_dict
[
name
])
else
:
op_analyst
.
add
(
name
,
time_list_dict
[
name
])
self
.
ave_call
=
sum
(
call_time_list
)
*
1.0
/
len
(
call_time_list
)
self
.
ave_prepack
=
sum
(
prepack_time_list
)
*
1.0
/
len
(
prepack_time_list
)
self
.
ave_postpack
=
sum
(
postpack_time_list
)
*
1.0
/
len
(
postpack_time_list
)
self
.
op_analyst
=
op_analyst
return
(
self
.
ave_call
,
self
.
ave_prepack
,
self
.
ave_postpack
,
self
.
op_analyst
)
class
OpAnalyst
(
object
):
def
__init__
(
self
,
start_time
,
end_time
):
self
.
op_time_list_dict
=
{}
self
.
_qps
=
None
self
.
_close
=
False
self
.
start_time
=
start_time
self
.
end_time
=
end_time
def
add
(
self
,
name_str
,
ts_list
):
if
self
.
_close
:
_LOGGER
.
error
(
"OpAnalyst is closed."
)
return
op_name
,
curr_idx
,
step
=
self
.
_parse
(
name_str
)
if
op_name
not
in
self
.
op_time_list_dict
:
self
.
op_time_list_dict
[
op_name
]
=
{}
if
curr_idx
not
in
self
.
op_time_list_dict
[
op_name
]:
self
.
op_time_list_dict
[
op_name
][
curr_idx
]
=
{}
if
step
not
in
self
.
op_time_list_dict
[
op_name
][
curr_idx
]:
self
.
op_time_list_dict
[
op_name
][
curr_idx
][
step
]
=
[]
self
.
op_time_list_dict
[
op_name
][
curr_idx
][
step
].
extend
(
ts_list
)
def
_parse
(
self
,
name
):
step
,
name_str
=
name
.
split
(
"#"
)
name_str
=
name_str
[
1
:
-
1
]
op_name
,
curr_idx
=
name_str
.
split
(
"|"
)
return
op_name
,
curr_idx
,
step
def
_reduce_profile
(
self
):
"""
Calculating the average time-consuming of multiple concurrent OPs.
"""
if
self
.
_close
:
return
for
op_name
in
self
.
op_time_list_dict
:
total_time
=
None
for
curr_idx
in
self
.
op_time_list_dict
[
op_name
]:
ave_dict
=
{}
for
step
in
self
.
op_time_list_dict
[
op_name
][
curr_idx
]:
ave_dict
[
step
]
=
sum
(
self
.
op_time_list_dict
[
op_name
][
curr_idx
][
step
])
*
1.0
/
len
(
self
.
op_time_list_dict
[
op_name
][
curr_idx
][
step
])
if
total_time
is
None
:
total_time
=
ave_dict
else
:
for
step
in
ave_dict
:
total_time
[
step
]
+=
ave_dict
[
step
]
for
step
in
total_time
:
total_time
[
step
]
=
total_time
[
step
]
*
1.0
/
len
(
self
.
op_time_list_dict
[
op_name
])
self
.
op_time_list_dict
[
op_name
]
=
total_time
self
.
_close
=
True
def
_get_qps
(
self
):
"""
Calculating QPS for each step based on the time
consumed in each step of OP.
"""
if
self
.
_qps
is
not
None
:
return
self
.
_qps
self
.
_reduce_profile
()
self
.
_qps
=
{}
for
op_name
,
times
in
self
.
op_time_list_dict
.
items
():
self
.
_qps
[
op_name
]
=
{
step
:
1000.0
/
ts
for
step
,
ts
in
times
.
items
()
}
return
self
.
_qps
def
__str__
(
self
):
self
.
_reduce_profile
()
return
json
.
dumps
(
self
.
op_time_list_dict
,
indent
=
2
,
separators
=
(
', '
,
':'
))
def
qps
(
self
,
op_name
=
None
):
"""
Get the average QPS of each step of each OP (in q/s)
"""
self
.
_get_qps
()
if
op_name
is
None
:
return
self
.
_qps
else
:
return
self
.
_qps
[
op_name
]
def
times
(
self
,
op_name
=
None
):
"""
Get the average time of each step of each OP (in ms)
"""
self
.
_reduce_profile
()
if
op_name
is
None
:
return
self
.
op_time_list_dict
else
:
return
self
.
op_time_list_dict
[
op_name
]
def
concurrency_analysis
(
self
,
op_config_yaml
):
"""
Through OP time consuming and op_config_yaml to
calculate the theoretical QPS, as well as the
number of concurrency required by each OPs.
It should be noted that since multiple models
will affect each other on one card, only the
case that each model is on a different card can
be calculated.
The format of the yaml file is as follows:
```yaml
<op_name>:
<step(prep, midp or postp)>: <GPU id>
```
For example:
```yaml
cnn:
midp: 0
bow:
midp: 1
```
"""
import
yaml
with
open
(
op_config_yaml
)
as
f
:
op_config
=
yaml
.
load
(
f
)
# check that each model is deployed on a different card
card_set
=
set
()
# and finding the most time consuming part (GPU)
op_times
=
self
.
times
()
most_time
=
0
most_time_op_name
=
None
for
op
in
op_config
:
for
step
,
cards
in
op_config
[
op
].
items
():
if
isinstance
(
cards
,
int
):
cards
=
[
cards
]
elif
isinstance
(
cards
,
str
):
cards
=
[
int
(
x
)
for
x
in
cards
.
split
(
','
)]
else
:
raise
Exception
(
"Error cards type."
)
for
card
in
cards
:
if
card
in
card_set
:
raise
Exception
(
"Analysis is failed because "
"different services interact when different"
" models are deployed on one card."
)
else
:
card_set
.
add
(
card
)
times_each_card
=
op_times
[
op
][
step
]
/
len
(
cards
)
if
most_time
<
times_each_card
:
most_time
=
times_each_card
most_time_op_name
=
op
# calculate base qps
base_qps
=
1.0
/
most_time
# q/ms
_LOGGER
.
info
(
"Most Time Consuming (GPU): {} ms (op: {})"
.
format
(
most_time
,
most_time_op_name
))
_LOGGER
.
info
(
"Theoretically Expected QPS: {} q/s"
.
format
(
base_qps
*
1000
))
# reduce op times
op_times
=
{
op_name
:
sum
(
step_times
.
values
())
for
op_name
,
step_times
in
op_times
.
items
()
}
# calculate op concurrency
op_concurrency
=
{
op_name
:
round
(
base_qps
*
times
,
3
)
for
op_name
,
times
in
op_times
.
items
()
}
return
op_concurrency
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录