未验证 提交 3d0a4297 编写于 作者: T TeslaZhao 提交者: GitHub

Merge pull request #1064 from HexToString/fix_encoding_bug

fix doc 
......@@ -101,17 +101,22 @@ cd ../../../java/examples/target
java -cp paddle-serving-sdk-java-examples-0.0.1-jar-with-dependencies.jar PipelineClientExample indarray_predict
```
### Precautions for details
1.In the example, all models(not pipeline) need to use `--use_multilang` to start GRPC multi-programming language support, and the port number is 9393. If you need another port, you need to modify it in the java file
2.Currently Serving has launched the Pipeline mode (see [Pipeline Serving](../doc/PIPELINE_SERVING.md) for details). Pipeline Serving Client for Java is released.
3.The parameters`ip` and`port` in PipelineClientExample.java(path:java/examples/src/main/java/[PipelineClientExample.java](./examples/src/main/java/PipelineClientExample.java)),needs to be connected with the corresponding pipeline server parameters`ip` and`port` which is defined in the config.yaml(Taking IMDB model ensemble as an example,path:python/examples/pipeline/imdb_model_ensemble/[config.yaml](../python/examples/pipeline/imdb_model_ensemble/config.yml)
### Customization guidance
The above example is running in CPU mode. If GPU mode is required, there are two options.
Because the docker image of Java does not contain the compilation and development environment required by serving, and the regular docker image of serving does not contain the compilation and development environment required by Java, the secondary compilation and development of GPU serving and Java client need to be completed under their respective docker images. So, we take GPU mode as an example to explain the two ways of development and deployment.
The first is that GPU Serving and Java Client are in the same image. After starting the corresponding image, the user needs to move /Serving/java in the java image to the corresponding image.
The first is that when GPU serving and Java client are running in the same GPU image, the user needs to copy the files compiled in the java image (path:/serving /Java) to the path /serving/Java of the GPU image.
The second is to deploy GPU Serving and Java Client separately. If they are on the same host, you can learn the IP address of the corresponding container through ifconfig, and then when you connect to client.connect in `examples/src/main/java/PaddleServingClientExample.java` Make changes to the endpoint, and then compile it again. Or select `--net=host` to bind the network device of docker and host when docker starts, so that it can run directly without customizing java code.
**It should be noted that in the example, all models(not pipeline) need to use `--use_multilang` to start GRPC multi-programming language support, and the port number is 9393. If you need another port, you need to modify it in the java file**
The second is that GPU serving and Java client are deployed in their respective docker images (or different hosts with compilation and development environment). At this time, you only need to pay attention to the `ip` and`port` correspondence between the Java client and GPU serving. See item 3 of the above precautions for details.
**Currently Serving has launched the Pipeline mode (see [Pipeline Serving](../doc/PIPELINE_SERVING.md) for details). Pipeline Serving Client for Java is released.**
**It should be noted that in the example, Java Pipeline Client code is in path /Java/Examples and /Java/src/main, and the Pipeline server code is in path /python/examples/pipeline/ The Client IP and Port(which is configured in java/examples/src/main/java/PipelineClientExample.java) should be corresponding to the Pipeline Server IP and Port(which is configured in config.yaml) **
......@@ -103,17 +103,20 @@ cd ../../../java/examples/target
java -cp paddle-serving-sdk-java-examples-0.0.1-jar-with-dependencies.jar PipelineClientExample indarray_predict
```
### 二次开发指导
### 注意事项
上述示例是在CPU模式下运行,如果需要GPU模式,可以有两种选择
1.在示例中,所有非Pipeline模型都需要使用`--use_multilang`来启动GRPC多编程语言支持,以及端口号都是9393,如果需要别的端口,需要在java文件里修改
第一种是GPU Serving和Java Client在同一个镜像,需要用户在启动对应的镜像后,把java镜像当中的/Serving/java移动到对应的镜像中
2.目前Serving已推出Pipeline模式(原理详见[Pipeline Serving](../doc/PIPELINE_SERVING_CN.md)),面向Java的Pipeline Serving Client已发布
第二种是GPU Serving和Java Client分开部署,如果在同一台宿主机,可以通过ifconfig了解对应容器的IP地址,然后在`examples/src/main/java/PaddleServingClientExample.java`当中对client.connect时的endpoint做修改,然后再编译一次。 或者在docker启动时选择 `--net=host`来绑定docker和宿主机的网络设备,这样不需要定制java代码可以直接运行。
3.注意PipelineClientExample.java中的ip和port(位于java/examples/src/main/java/[PipelineClientExample.java](./examples/src/main/java/PipelineClientExample.java)),需要与对应Pipeline server的config.yaml文件中配置的ip和port相对应。(以IMDB model ensemble模型为例,位于python/examples/pipeline/imdb_model_ensemble/[config.yaml](../python/examples/pipeline/imdb_model_ensemble/config.yml)
**需要注意的是,在示例中,所有非Pipeline模型都需要使用`--use_multilang`来启动GRPC多编程语言支持,以及端口号都是9393,如果需要别的端口,需要在java文件里修改**
### 开发部署指导
由于Java的docker镜像中不含有Serving需要的编译开发环境,Serving的常规docker镜像中也不包含Java所需要的编译开发环境,对GPU Serving端和Java Client端的二次编译开发需要在各自的docker镜像下完成,下面以GPU模式为例,讲解开发部署的两种形式。
第一种是GPU Serving和Java Client在运行在同一个GPU镜像中,需要用户在启动GPU镜像后,把在java镜像中编译完成后的文件(位于/Serving/java目录下)拷贝到GPU镜像中的/Serving/java目录下。
第二种是GPU Serving和Java Client分别在各自的docker镜像中(或具备编译开发环境的不同主机上)部署,此时仅需注意Java Client端与GPU Serving端的ip和port需要对应,详见上述注意事项中的第3项。
**目前Serving已推出Pipeline模式(详见[Pipeline Serving](../doc/PIPELINE_SERVING_CN.md)),面向Java的Pipeline Serving Client已发布。**
**需要注意的是,Java Pipeline Client相关示例在/Java/Examples和/Java/src/main中,对应的Pipeline server在/python/examples/pipeline/中
注意java/examples/src/main/java/PipelineClientExample.java中的ip和port,需要与/python/examples/pipeline/中对应Pipeline server的config.yaml文件中配置的ip和port相对应。**
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册