Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
35c49be2
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
35c49be2
编写于
8月 10, 2021
作者:
T
TeslaZhao
提交者:
GitHub
8月 10, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1338 from TeslaZhao/develop
Python Pipeline mode supports skip ops for 'LOOP' executions and some updates
上级
f7993c3e
3d1bd499
变更
29
隐藏空白更改
内联
并排
Showing
29 changed file
with
319 addition
and
116 deletion
+319
-116
python/examples/pipeline/PaddleClas/DarkNet53/resnet50_web_service.py
...les/pipeline/PaddleClas/DarkNet53/resnet50_web_service.py
+1
-1
python/examples/pipeline/PaddleClas/HRNet_W18_C/resnet50_web_service.py
...s/pipeline/PaddleClas/HRNet_W18_C/resnet50_web_service.py
+1
-1
python/examples/pipeline/PaddleClas/MobileNetV1/resnet50_web_service.py
...s/pipeline/PaddleClas/MobileNetV1/resnet50_web_service.py
+1
-1
python/examples/pipeline/PaddleClas/MobileNetV2/resnet50_web_service.py
...s/pipeline/PaddleClas/MobileNetV2/resnet50_web_service.py
+1
-1
python/examples/pipeline/PaddleClas/MobileNetV3_large_x1_0/resnet50_web_service.py
...PaddleClas/MobileNetV3_large_x1_0/resnet50_web_service.py
+1
-1
python/examples/pipeline/PaddleClas/ResNeXt101_vd_64x4d/resnet50_web_service.py
...ne/PaddleClas/ResNeXt101_vd_64x4d/resnet50_web_service.py
+1
-1
python/examples/pipeline/PaddleClas/ResNet50_vd/resnet50_web_service.py
...s/pipeline/PaddleClas/ResNet50_vd/resnet50_web_service.py
+1
-1
python/examples/pipeline/PaddleClas/ResNet50_vd_FPGM/resnet50_web_service.py
...eline/PaddleClas/ResNet50_vd_FPGM/resnet50_web_service.py
+1
-1
python/examples/pipeline/PaddleClas/ResNet50_vd_KL/resnet50_web_service.py
...ipeline/PaddleClas/ResNet50_vd_KL/resnet50_web_service.py
+1
-1
python/examples/pipeline/PaddleClas/ResNet50_vd_PACT/resnet50_web_service.py
...eline/PaddleClas/ResNet50_vd_PACT/resnet50_web_service.py
+1
-1
python/examples/pipeline/PaddleClas/ResNet_V2_50/resnet50_web_service.py
.../pipeline/PaddleClas/ResNet_V2_50/resnet50_web_service.py
+1
-1
python/examples/pipeline/PaddleClas/ShuffleNetV2_x1_0/resnet50_web_service.py
...line/PaddleClas/ShuffleNetV2_x1_0/resnet50_web_service.py
+1
-1
python/examples/pipeline/PaddleDetection/faster_rcnn/web_service.py
...mples/pipeline/PaddleDetection/faster_rcnn/web_service.py
+17
-8
python/examples/pipeline/PaddleDetection/ppyolo_mbv3/web_service.py
...mples/pipeline/PaddleDetection/ppyolo_mbv3/web_service.py
+17
-8
python/examples/pipeline/PaddleDetection/yolov3/web_service.py
...n/examples/pipeline/PaddleDetection/yolov3/web_service.py
+17
-8
python/examples/pipeline/bert/README.md
python/examples/pipeline/bert/README.md
+1
-1
python/examples/pipeline/bert/README_CN.md
python/examples/pipeline/bert/README_CN.md
+1
-1
python/examples/pipeline/bert/web_service.py
python/examples/pipeline/bert/web_service.py
+5
-3
python/examples/pipeline/imagenet/resnet50_web_service.py
python/examples/pipeline/imagenet/resnet50_web_service.py
+1
-1
python/examples/pipeline/ocr/web_service.py
python/examples/pipeline/ocr/web_service.py
+2
-2
python/examples/pipeline/simple_web_service/web_service.py
python/examples/pipeline/simple_web_service/web_service.py
+4
-3
python/examples/pipeline/simple_web_service/web_service_java.py
.../examples/pipeline/simple_web_service/web_service_java.py
+4
-3
python/paddle_serving_app/local_predict.py
python/paddle_serving_app/local_predict.py
+21
-1
python/paddle_serving_client/client.py
python/paddle_serving_client/client.py
+0
-2
python/paddle_serving_client/io/__init__.py
python/paddle_serving_client/io/__init__.py
+76
-27
python/paddle_serving_server/serve.py
python/paddle_serving_server/serve.py
+0
-1
python/paddle_serving_server/server.py
python/paddle_serving_server/server.py
+1
-2
python/pipeline/dag.py
python/pipeline/dag.py
+14
-6
python/pipeline/operator.py
python/pipeline/operator.py
+126
-27
未找到文件。
python/examples/pipeline/PaddleClas/DarkNet53/resnet50_web_service.py
浏览文件 @
35c49be2
...
...
@@ -46,7 +46,7 @@ class ImagenetOp(Op):
input_imgs
=
np
.
concatenate
(
imgs
,
axis
=
0
)
return
{
"image"
:
input_imgs
},
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
data_id
,
log_id
):
score_list
=
fetch_dict
[
"prediction"
]
result
=
{
"label"
:
[],
"prob"
:
[]}
for
score
in
score_list
:
...
...
python/examples/pipeline/PaddleClas/HRNet_W18_C/resnet50_web_service.py
浏览文件 @
35c49be2
...
...
@@ -49,7 +49,7 @@ class ImagenetOp(Op):
input_imgs
=
np
.
concatenate
(
imgs
,
axis
=
0
)
return
{
"image"
:
input_imgs
},
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
data_id
,
log_id
):
score_list
=
fetch_dict
[
"prediction"
]
result
=
{
"label"
:
[],
"prob"
:
[]}
for
score
in
score_list
:
...
...
python/examples/pipeline/PaddleClas/MobileNetV1/resnet50_web_service.py
浏览文件 @
35c49be2
...
...
@@ -49,7 +49,7 @@ class ImagenetOp(Op):
input_imgs
=
np
.
concatenate
(
imgs
,
axis
=
0
)
return
{
"image"
:
input_imgs
},
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
data_id
,
log_id
):
score_list
=
fetch_dict
[
"prediction"
]
result
=
{
"label"
:
[],
"prob"
:
[]}
for
score
in
score_list
:
...
...
python/examples/pipeline/PaddleClas/MobileNetV2/resnet50_web_service.py
浏览文件 @
35c49be2
...
...
@@ -49,7 +49,7 @@ class ImagenetOp(Op):
input_imgs
=
np
.
concatenate
(
imgs
,
axis
=
0
)
return
{
"image"
:
input_imgs
},
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
data_id
,
log_id
):
score_list
=
fetch_dict
[
"prediction"
]
result
=
{
"label"
:
[],
"prob"
:
[]}
for
score
in
score_list
:
...
...
python/examples/pipeline/PaddleClas/MobileNetV3_large_x1_0/resnet50_web_service.py
浏览文件 @
35c49be2
...
...
@@ -49,7 +49,7 @@ class ImagenetOp(Op):
input_imgs
=
np
.
concatenate
(
imgs
,
axis
=
0
)
return
{
"image"
:
input_imgs
},
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
data_id
,
log_id
):
score_list
=
fetch_dict
[
"prediction"
]
result
=
{
"label"
:
[],
"prob"
:
[]}
for
score
in
score_list
:
...
...
python/examples/pipeline/PaddleClas/ResNeXt101_vd_64x4d/resnet50_web_service.py
浏览文件 @
35c49be2
...
...
@@ -49,7 +49,7 @@ class ImagenetOp(Op):
input_imgs
=
np
.
concatenate
(
imgs
,
axis
=
0
)
return
{
"image"
:
input_imgs
},
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
data_id
,
log_id
):
score_list
=
fetch_dict
[
"prediction"
]
result
=
{
"label"
:
[],
"prob"
:
[]}
for
score
in
score_list
:
...
...
python/examples/pipeline/PaddleClas/ResNet50_vd/resnet50_web_service.py
浏览文件 @
35c49be2
...
...
@@ -49,7 +49,7 @@ class ImagenetOp(Op):
input_imgs
=
np
.
concatenate
(
imgs
,
axis
=
0
)
return
{
"image"
:
input_imgs
},
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
data_id
,
log_id
):
score_list
=
fetch_dict
[
"prediction"
]
result
=
{
"label"
:
[],
"prob"
:
[]}
for
score
in
score_list
:
...
...
python/examples/pipeline/PaddleClas/ResNet50_vd_FPGM/resnet50_web_service.py
浏览文件 @
35c49be2
...
...
@@ -49,7 +49,7 @@ class ImagenetOp(Op):
input_imgs
=
np
.
concatenate
(
imgs
,
axis
=
0
)
return
{
"image"
:
input_imgs
},
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
data_id
,
log_id
):
score_list
=
fetch_dict
[
"save_infer_model/scale_0.tmp_1"
]
result
=
{
"label"
:
[],
"prob"
:
[]}
for
score
in
score_list
:
...
...
python/examples/pipeline/PaddleClas/ResNet50_vd_KL/resnet50_web_service.py
浏览文件 @
35c49be2
...
...
@@ -49,7 +49,7 @@ class ImagenetOp(Op):
input_imgs
=
np
.
concatenate
(
imgs
,
axis
=
0
)
return
{
"inputs"
:
input_imgs
},
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
data_id
,
log_id
):
score_list
=
fetch_dict
[
"save_infer_model/scale_0.tmp_0"
]
result
=
{
"label"
:
[],
"prob"
:
[]}
for
score
in
score_list
:
...
...
python/examples/pipeline/PaddleClas/ResNet50_vd_PACT/resnet50_web_service.py
浏览文件 @
35c49be2
...
...
@@ -49,7 +49,7 @@ class ImagenetOp(Op):
input_imgs
=
np
.
concatenate
(
imgs
,
axis
=
0
)
return
{
"inputs"
:
input_imgs
},
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
data_id
,
log_id
):
score_list
=
fetch_dict
[
"save_infer_model/scale_0.tmp_1"
]
result
=
{
"label"
:
[],
"prob"
:
[]}
for
score
in
score_list
:
...
...
python/examples/pipeline/PaddleClas/ResNet_V2_50/resnet50_web_service.py
浏览文件 @
35c49be2
...
...
@@ -46,7 +46,7 @@ class ImagenetOp(Op):
input_imgs
=
np
.
concatenate
(
imgs
,
axis
=
0
)
return
{
"image"
:
input_imgs
},
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
data_id
,
log_id
):
score_list
=
fetch_dict
[
"score"
]
result
=
{
"label"
:
[],
"prob"
:
[]}
for
score
in
score_list
:
...
...
python/examples/pipeline/PaddleClas/ShuffleNetV2_x1_0/resnet50_web_service.py
浏览文件 @
35c49be2
...
...
@@ -49,7 +49,7 @@ class ImagenetOp(Op):
input_imgs
=
np
.
concatenate
(
imgs
,
axis
=
0
)
return
{
"image"
:
input_imgs
},
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
data_id
,
log_id
):
score_list
=
fetch_dict
[
"prediction"
]
result
=
{
"label"
:
[],
"prob"
:
[]}
for
score
in
score_list
:
...
...
python/examples/pipeline/PaddleDetection/faster_rcnn/web_service.py
浏览文件 @
35c49be2
...
...
@@ -19,6 +19,7 @@ import cv2
from
paddle_serving_app.reader
import
*
import
base64
class
FasterRCNNOp
(
Op
):
def
init_op
(
self
):
self
.
img_preprocess
=
Sequential
([
...
...
@@ -38,22 +39,30 @@ class FasterRCNNOp(Op):
im
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
im
=
self
.
img_preprocess
(
im
)
imgs
.
append
({
"image"
:
im
[
np
.
newaxis
,:],
"im_shape"
:
np
.
array
(
list
(
im
.
shape
[
1
:])).
reshape
(
-
1
)[
np
.
newaxis
,:],
"scale_factor"
:
np
.
array
([
1.0
,
1.0
]).
reshape
(
-
1
)[
np
.
newaxis
,:],
"image"
:
im
[
np
.
newaxis
,
:],
"im_shape"
:
np
.
array
(
list
(
im
.
shape
[
1
:])).
reshape
(
-
1
)[
np
.
newaxis
,
:],
"scale_factor"
:
np
.
array
([
1.0
,
1.0
]).
reshape
(
-
1
)[
np
.
newaxis
,
:],
})
feed_dict
=
{
"image"
:
np
.
concatenate
([
x
[
"image"
]
for
x
in
imgs
],
axis
=
0
),
"im_shape"
:
np
.
concatenate
([
x
[
"im_shape"
]
for
x
in
imgs
],
axis
=
0
),
"scale_factor"
:
np
.
concatenate
([
x
[
"scale_factor"
]
for
x
in
imgs
],
axis
=
0
)
"image"
:
np
.
concatenate
(
[
x
[
"image"
]
for
x
in
imgs
],
axis
=
0
),
"im_shape"
:
np
.
concatenate
(
[
x
[
"im_shape"
]
for
x
in
imgs
],
axis
=
0
),
"scale_factor"
:
np
.
concatenate
(
[
x
[
"scale_factor"
]
for
x
in
imgs
],
axis
=
0
)
}
#for key in feed_dict.keys():
# print(key, feed_dict[key].shape)
return
feed_dict
,
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
data_id
,
log_id
):
#print(fetch_dict)
res_dict
=
{
"bbox_result"
:
str
(
self
.
img_postprocess
(
fetch_dict
,
visualize
=
False
))}
res_dict
=
{
"bbox_result"
:
str
(
self
.
img_postprocess
(
fetch_dict
,
visualize
=
False
))
}
return
res_dict
,
None
,
""
...
...
python/examples/pipeline/PaddleDetection/ppyolo_mbv3/web_service.py
浏览文件 @
35c49be2
...
...
@@ -19,6 +19,7 @@ import cv2
from
paddle_serving_app.reader
import
*
import
base64
class
PPYoloMbvOp
(
Op
):
def
init_op
(
self
):
self
.
img_preprocess
=
Sequential
([
...
...
@@ -38,23 +39,31 @@ class PPYoloMbvOp(Op):
im
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
im
=
self
.
img_preprocess
(
im
)
imgs
.
append
({
"image"
:
im
[
np
.
newaxis
,:],
"im_shape"
:
np
.
array
(
list
(
im
.
shape
[
1
:])).
reshape
(
-
1
)[
np
.
newaxis
,:],
"scale_factor"
:
np
.
array
([
1.0
,
1.0
]).
reshape
(
-
1
)[
np
.
newaxis
,:],
"image"
:
im
[
np
.
newaxis
,
:],
"im_shape"
:
np
.
array
(
list
(
im
.
shape
[
1
:])).
reshape
(
-
1
)[
np
.
newaxis
,
:],
"scale_factor"
:
np
.
array
([
1.0
,
1.0
]).
reshape
(
-
1
)[
np
.
newaxis
,
:],
})
feed_dict
=
{
"image"
:
np
.
concatenate
([
x
[
"image"
]
for
x
in
imgs
],
axis
=
0
),
"im_shape"
:
np
.
concatenate
([
x
[
"im_shape"
]
for
x
in
imgs
],
axis
=
0
),
"scale_factor"
:
np
.
concatenate
([
x
[
"scale_factor"
]
for
x
in
imgs
],
axis
=
0
)
"image"
:
np
.
concatenate
(
[
x
[
"image"
]
for
x
in
imgs
],
axis
=
0
),
"im_shape"
:
np
.
concatenate
(
[
x
[
"im_shape"
]
for
x
in
imgs
],
axis
=
0
),
"scale_factor"
:
np
.
concatenate
(
[
x
[
"scale_factor"
]
for
x
in
imgs
],
axis
=
0
)
}
for
key
in
feed_dict
.
keys
():
print
(
key
,
feed_dict
[
key
].
shape
)
return
feed_dict
,
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
data_id
,
log_id
):
#print(fetch_dict)
res_dict
=
{
"bbox_result"
:
str
(
self
.
img_postprocess
(
fetch_dict
,
visualize
=
False
))}
res_dict
=
{
"bbox_result"
:
str
(
self
.
img_postprocess
(
fetch_dict
,
visualize
=
False
))
}
return
res_dict
,
None
,
""
...
...
python/examples/pipeline/PaddleDetection/yolov3/web_service.py
浏览文件 @
35c49be2
...
...
@@ -19,6 +19,7 @@ import cv2
from
paddle_serving_app.reader
import
*
import
base64
class
Yolov3Op
(
Op
):
def
init_op
(
self
):
self
.
img_preprocess
=
Sequential
([
...
...
@@ -38,22 +39,30 @@ class Yolov3Op(Op):
im
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
im
=
self
.
img_preprocess
(
im
)
imgs
.
append
({
"image"
:
im
[
np
.
newaxis
,:],
"im_shape"
:
np
.
array
(
list
(
im
.
shape
[
1
:])).
reshape
(
-
1
)[
np
.
newaxis
,:],
"scale_factor"
:
np
.
array
([
1.0
,
1.0
]).
reshape
(
-
1
)[
np
.
newaxis
,:],
"image"
:
im
[
np
.
newaxis
,
:],
"im_shape"
:
np
.
array
(
list
(
im
.
shape
[
1
:])).
reshape
(
-
1
)[
np
.
newaxis
,
:],
"scale_factor"
:
np
.
array
([
1.0
,
1.0
]).
reshape
(
-
1
)[
np
.
newaxis
,
:],
})
feed_dict
=
{
"image"
:
np
.
concatenate
([
x
[
"image"
]
for
x
in
imgs
],
axis
=
0
),
"im_shape"
:
np
.
concatenate
([
x
[
"im_shape"
]
for
x
in
imgs
],
axis
=
0
),
"scale_factor"
:
np
.
concatenate
([
x
[
"scale_factor"
]
for
x
in
imgs
],
axis
=
0
)
"image"
:
np
.
concatenate
(
[
x
[
"image"
]
for
x
in
imgs
],
axis
=
0
),
"im_shape"
:
np
.
concatenate
(
[
x
[
"im_shape"
]
for
x
in
imgs
],
axis
=
0
),
"scale_factor"
:
np
.
concatenate
(
[
x
[
"scale_factor"
]
for
x
in
imgs
],
axis
=
0
)
}
#for key in feed_dict.keys():
# print(key, feed_dict[key].shape)
return
feed_dict
,
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
data_id
,
log_id
):
#print(fetch_dict)
res_dict
=
{
"bbox_result"
:
str
(
self
.
img_postprocess
(
fetch_dict
,
visualize
=
False
))}
res_dict
=
{
"bbox_result"
:
str
(
self
.
img_postprocess
(
fetch_dict
,
visualize
=
False
))
}
return
res_dict
,
None
,
""
...
...
python/examples/pipeline/bert/README.md
浏览文件 @
35c49be2
...
...
@@ -4,7 +4,7 @@ This document will takes Imagenet service as an example to introduce how to use
## Get model
```
sh get_
model
.sh
sh get_
data
.sh
```
## Start server
...
...
python/examples/pipeline/bert/README_CN.md
浏览文件 @
35c49be2
...
...
@@ -4,7 +4,7 @@
## 获取模型
```
sh get_
model
.sh
sh get_
data
.sh
```
## 启动服务
...
...
python/examples/pipeline/bert/web_service.py
浏览文件 @
35c49be2
...
...
@@ -43,9 +43,11 @@ class BertOp(Op):
print
(
key
,
feed_dict
[
key
].
shape
)
return
feed_dict
,
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
fetch_dict
[
"pooled_output"
]
=
str
(
fetch_dict
[
"pooled_output"
])
return
fetch_dict
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
data_id
,
log_id
):
new_dict
=
{}
new_dict
[
"pooled_output"
]
=
str
(
fetch_dict
[
"pooled_output"
])
new_dict
[
"sequence_output"
]
=
str
(
fetch_dict
[
"sequence_output"
])
return
new_dict
,
None
,
""
class
BertService
(
WebService
):
...
...
python/examples/pipeline/imagenet/resnet50_web_service.py
浏览文件 @
35c49be2
...
...
@@ -42,7 +42,7 @@ class ImagenetOp(Op):
img
=
self
.
seq
(
im
)
return
{
"image"
:
img
[
np
.
newaxis
,
:].
copy
()},
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
data_id
,
log_id
):
print
(
fetch_dict
)
score_list
=
fetch_dict
[
"score"
]
result
=
{
"label"
:
[],
"prob"
:
[]}
...
...
python/examples/pipeline/ocr/web_service.py
浏览文件 @
35c49be2
...
...
@@ -54,7 +54,7 @@ class DetOp(Op):
imgs
.
append
(
det_img
[
np
.
newaxis
,
:].
copy
())
return
{
"image"
:
np
.
concatenate
(
imgs
,
axis
=
0
)},
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
data_id
,
log_id
):
# print(fetch_dict)
det_out
=
fetch_dict
[
"concat_1.tmp_0"
]
ratio_list
=
[
...
...
@@ -149,7 +149,7 @@ class RecOp(Op):
return
feed_list
,
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_data
,
log_id
):
def
postprocess
(
self
,
input_dicts
,
fetch_data
,
data_id
,
log_id
):
res_list
=
[]
if
isinstance
(
fetch_data
,
dict
):
if
len
(
fetch_data
)
>
0
:
...
...
python/examples/pipeline/simple_web_service/web_service.py
浏览文件 @
35c49be2
...
...
@@ -40,9 +40,10 @@ class UciOp(Op):
proc_dict
=
{}
return
input_dict
,
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
_LOGGER
.
info
(
"UciOp::postprocess >>> log_id:{}, fetch_dict:{}"
.
format
(
log_id
,
fetch_dict
))
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
data_id
,
log_id
):
_LOGGER
.
info
(
"UciOp::postprocess >>> data_id:{}, log_id:{}, fetch_dict:{}"
.
format
(
data_id
,
log_id
,
fetch_dict
))
fetch_dict
[
"price"
]
=
str
(
fetch_dict
[
"price"
])
return
fetch_dict
,
None
,
""
...
...
python/examples/pipeline/simple_web_service/web_service_java.py
浏览文件 @
35c49be2
...
...
@@ -41,9 +41,10 @@ class UciOp(Op):
return
input_dict
,
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
_LOGGER
.
info
(
"UciOp::postprocess >>> log_id:{}, fetch_dict:{}"
.
format
(
log_id
,
fetch_dict
))
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
data_id
,
log_id
):
_LOGGER
.
info
(
"UciOp::postprocess >>> data_id:{}, log_id:{}, fetch_dict:{}"
.
format
(
data_id
,
log_id
,
fetch_dict
))
fetch_dict
[
"price"
]
=
str
(
fetch_dict
[
"price"
][
0
][
0
])
return
fetch_dict
,
None
,
""
...
...
python/paddle_serving_app/local_predict.py
浏览文件 @
35c49be2
...
...
@@ -127,7 +127,8 @@ class LocalPredictor(object):
for
i
,
var
in
enumerate
(
model_conf
.
fetch_var
):
self
.
fetch_names_to_idx_
[
var
.
alias_name
]
=
i
self
.
fetch_names_to_type_
[
var
.
alias_name
]
=
var
.
fetch_type
self
.
fetch_types_
[
var
.
alias_name
]
=
var
.
fetch_type
self
.
fetch_names_to_type_
[
var
.
alias_name
]
=
var
.
shape
# set precision of inference.
precision_type
=
paddle_infer
.
PrecisionType
.
Float32
...
...
@@ -253,8 +254,27 @@ class LocalPredictor(object):
feed
[
name
]
=
feed
[
name
].
astype
(
"float32"
)
elif
self
.
feed_types_
[
name
]
==
2
:
feed
[
name
]
=
feed
[
name
].
astype
(
"int32"
)
elif
self
.
feed_types_
[
name
]
==
3
:
feed
[
name
]
=
feed
[
name
].
astype
(
"float64"
)
elif
self
.
feed_types_
[
name
]
==
4
:
feed
[
name
]
=
feed
[
name
].
astype
(
"int16"
)
elif
self
.
feed_types_
[
name
]
==
5
:
feed
[
name
]
=
feed
[
name
].
astype
(
"float16"
)
elif
self
.
feed_types_
[
name
]
==
6
:
feed
[
name
]
=
feed
[
name
].
astype
(
"uint16"
)
elif
self
.
feed_types_
[
name
]
==
7
:
feed
[
name
]
=
feed
[
name
].
astype
(
"uint8"
)
elif
self
.
feed_types_
[
name
]
==
8
:
feed
[
name
]
=
feed
[
name
].
astype
(
"int8"
)
elif
self
.
feed_types_
[
name
]
==
9
:
feed
[
name
]
=
feed
[
name
].
astype
(
"bool"
)
elif
self
.
feed_types_
[
name
]
==
10
:
feed
[
name
]
=
feed
[
name
].
astype
(
"complex64"
)
elif
self
.
feed_types_
[
name
]
==
11
:
feed
[
name
]
=
feed
[
name
].
astype
(
"complex128"
)
else
:
raise
ValueError
(
"local predictor receives wrong data type"
)
input_tensor_handle
=
self
.
predictor
.
get_input_handle
(
name
)
if
"{}.lod"
.
format
(
name
)
in
feed
:
input_tensor_handle
.
set_lod
([
feed
[
"{}.lod"
.
format
(
name
)]])
...
...
python/paddle_serving_client/client.py
浏览文件 @
35c49be2
...
...
@@ -337,8 +337,6 @@ class Client(object):
string_shape
=
[]
fetch_names
=
[]
counter
=
0
for
key
in
fetch_list
:
if
key
in
self
.
fetch_names_
:
fetch_names
.
append
(
key
)
...
...
python/paddle_serving_client/io/__init__.py
浏览文件 @
35c49be2
...
...
@@ -31,6 +31,21 @@ import paddle.nn.functional as F
import
errno
from
paddle.jit
import
to_static
_PADDLE_DTYPE_2_NUMPY_DTYPE
=
{
core
.
VarDesc
.
VarType
.
BOOL
:
'bool'
,
core
.
VarDesc
.
VarType
.
FP16
:
'float16'
,
core
.
VarDesc
.
VarType
.
BF16
:
'uint16'
,
core
.
VarDesc
.
VarType
.
FP32
:
'float32'
,
core
.
VarDesc
.
VarType
.
FP64
:
'float64'
,
core
.
VarDesc
.
VarType
.
INT8
:
'int8'
,
core
.
VarDesc
.
VarType
.
INT16
:
'int16'
,
core
.
VarDesc
.
VarType
.
INT32
:
'int32'
,
core
.
VarDesc
.
VarType
.
INT64
:
'int64'
,
core
.
VarDesc
.
VarType
.
UINT8
:
'uint8'
,
core
.
VarDesc
.
VarType
.
COMPLEX64
:
'complex64'
,
core
.
VarDesc
.
VarType
.
COMPLEX128
:
'complex128'
,
}
def
save_dygraph_model
(
serving_model_folder
,
client_config_folder
,
model
):
paddle
.
jit
.
save
(
model
,
"serving_tmp"
)
...
...
@@ -57,13 +72,8 @@ def save_dygraph_model(serving_model_folder, client_config_folder, model):
feed_var
=
model_conf
.
FeedVar
()
feed_var
.
alias_name
=
key
feed_var
.
name
=
feed_var_dict
[
key
].
name
feed_var
.
feed_type
=
var_type_conversion
(
feed_var_dict
[
key
].
dtype
)
feed_var
.
is_lod_tensor
=
feed_var_dict
[
key
].
lod_level
>=
1
if
feed_var_dict
[
key
].
dtype
==
core
.
VarDesc
.
VarType
.
INT64
:
feed_var
.
feed_type
=
0
if
feed_var_dict
[
key
].
dtype
==
core
.
VarDesc
.
VarType
.
FP32
:
feed_var
.
feed_type
=
1
if
feed_var_dict
[
key
].
dtype
==
core
.
VarDesc
.
VarType
.
INT32
:
feed_var
.
feed_type
=
2
if
feed_var
.
is_lod_tensor
:
feed_var
.
shape
.
extend
([
-
1
])
else
:
...
...
@@ -77,13 +87,8 @@ def save_dygraph_model(serving_model_folder, client_config_folder, model):
fetch_var
=
model_conf
.
FetchVar
()
fetch_var
.
alias_name
=
key
fetch_var
.
name
=
fetch_var_dict
[
key
].
name
fetch_var
.
fetch_type
=
var_type_conversion
(
fetch_var_dict
[
key
].
dtype
)
fetch_var
.
is_lod_tensor
=
1
if
fetch_var_dict
[
key
].
dtype
==
core
.
VarDesc
.
VarType
.
INT64
:
fetch_var
.
fetch_type
=
0
if
fetch_var_dict
[
key
].
dtype
==
core
.
VarDesc
.
VarType
.
FP32
:
fetch_var
.
fetch_type
=
1
if
fetch_var_dict
[
key
].
dtype
==
core
.
VarDesc
.
VarType
.
INT32
:
fetch_var
.
fetch_type
=
2
if
fetch_var
.
is_lod_tensor
:
fetch_var
.
shape
.
extend
([
-
1
])
else
:
...
...
@@ -119,6 +124,59 @@ def save_dygraph_model(serving_model_folder, client_config_folder, model):
fout
.
write
(
config
.
SerializeToString
())
def
var_type_conversion
(
dtype
):
"""
Variable type conversion
Args:
dtype: type of core.VarDesc.VarType.xxxxx
(https://github.com/PaddlePaddle/Paddle/blob/release/2.1/python/paddle/framework/dtype.py)
Returns:
(int)type value, -1 is type matching failed.
int64 => 0;
float32 => 1;
int32 => 2;
float64 => 3;
int16 => 4;
float16 => 5;
bfloat16 => 6;
uint8 => 7;
int8 => 8;
bool => 9;
complex64 => 10,
complex128 => 11;
"""
type_val
=
-
1
if
dtype
==
core
.
VarDesc
.
VarType
.
INT64
:
type_val
=
0
elif
dtype
==
core
.
VarDesc
.
VarType
.
FP32
:
type_val
=
1
elif
dtype
==
core
.
VarDesc
.
VarType
.
INT32
:
type_val
=
2
elif
dtype
==
core
.
VarDesc
.
VarType
.
FP64
:
type_val
=
3
elif
dtype
==
core
.
VarDesc
.
VarType
.
INT16
:
type_val
=
4
elif
dtype
==
core
.
VarDesc
.
VarType
.
FP16
:
type_val
=
5
elif
dtype
==
core
.
VarDesc
.
VarType
.
BF16
:
type_val
=
6
elif
dtype
==
core
.
VarDesc
.
VarType
.
UINT8
:
type_val
=
7
elif
dtype
==
core
.
VarDesc
.
VarType
.
INT8
:
type_val
=
8
elif
dtype
==
core
.
VarDesc
.
VarType
.
BOOL
:
type_val
=
9
elif
dtype
==
core
.
VarDesc
.
VarType
.
COMPLEX64
:
type_val
=
10
elif
dtype
==
core
.
VarDesc
.
VarType
.
COMPLEX128
:
type_val
=
11
else
:
type_val
=
-
1
return
type_val
def
save_model
(
server_model_folder
,
client_config_folder
,
feed_var_dict
,
...
...
@@ -164,18 +222,13 @@ def save_model(server_model_folder,
config
=
model_conf
.
GeneralModelConfig
()
#int64 = 0; float32 = 1; int32 = 2;
for
key
in
feed_var_dict
:
feed_var
=
model_conf
.
FeedVar
()
feed_var
.
alias_name
=
key
feed_var
.
name
=
feed_var_dict
[
key
].
name
feed_var
.
feed_type
=
var_type_conversion
(
feed_var_dict
[
key
].
dtype
)
feed_var
.
is_lod_tensor
=
feed_var_dict
[
key
].
lod_level
>=
1
if
feed_var_dict
[
key
].
dtype
==
core
.
VarDesc
.
VarType
.
INT64
:
feed_var
.
feed_type
=
0
if
feed_var_dict
[
key
].
dtype
==
core
.
VarDesc
.
VarType
.
FP32
:
feed_var
.
feed_type
=
1
if
feed_var_dict
[
key
].
dtype
==
core
.
VarDesc
.
VarType
.
INT32
:
feed_var
.
feed_type
=
2
if
feed_var
.
is_lod_tensor
:
feed_var
.
shape
.
extend
([
-
1
])
else
:
...
...
@@ -190,14 +243,10 @@ def save_model(server_model_folder,
fetch_var
=
model_conf
.
FetchVar
()
fetch_var
.
alias_name
=
key
fetch_var
.
name
=
fetch_var_dict
[
key
].
name
#fetch_var.is_lod_tensor = fetch_var_dict[key].lod_level >= 1
fetch_var
.
is_lod_tensor
=
1
if
fetch_var_dict
[
key
].
dtype
==
core
.
VarDesc
.
VarType
.
INT64
:
fetch_var
.
fetch_type
=
0
if
fetch_var_dict
[
key
].
dtype
==
core
.
VarDesc
.
VarType
.
FP32
:
fetch_var
.
fetch_type
=
1
if
fetch_var_dict
[
key
].
dtype
==
core
.
VarDesc
.
VarType
.
INT32
:
fetch_var
.
fetch_type
=
2
fetch_var
.
fetch_type
=
var_type_conversion
(
fetch_var_dict
[
key
].
dtype
)
fetch_var
.
is_lod_tensor
=
fetch_var_dict
[
key
].
lod_level
>=
1
#fetch_var.is_lod_tensor = 1
if
fetch_var
.
is_lod_tensor
:
fetch_var
.
shape
.
extend
([
-
1
])
else
:
...
...
python/paddle_serving_server/serve.py
浏览文件 @
35c49be2
...
...
@@ -101,7 +101,6 @@ def is_gpu_mode(unformatted_gpus):
for
ids
in
op_gpu_list
:
if
int
(
ids
)
>=
0
:
return
True
return
False
...
...
python/paddle_serving_server/server.py
浏览文件 @
35c49be2
...
...
@@ -140,7 +140,7 @@ class Server(object):
def
set_ir_optimize
(
self
,
flag
=
False
):
self
.
ir_optimization
=
flag
# Multi-Server does not have this Function.
# Multi-Server does not have this Function.
def
set_product_name
(
self
,
product_name
=
None
):
if
product_name
==
None
:
raise
ValueError
(
"product_name can't be None."
)
...
...
@@ -437,7 +437,6 @@ class Server(object):
def
download_bin
(
self
):
os
.
chdir
(
self
.
module_path
)
need_download
=
False
#acquire lock
version_file
=
open
(
"{}/version.py"
.
format
(
self
.
module_path
),
"r"
)
...
...
python/pipeline/dag.py
浏览文件 @
35c49be2
...
...
@@ -176,7 +176,7 @@ class DAGExecutor(object):
"in_channel must be Channel type, but get {}"
.
format
(
type
(
in_channel
)))
os
.
_exit
(
-
1
)
in_channel
.
add_producer
(
self
.
name
)
self
.
_in_channel
=
in_channel
_LOGGER
.
info
(
"[DAG] set in channel succ, name [{}]"
.
format
(
self
.
name
))
...
...
@@ -669,14 +669,14 @@ class DAG(object):
out_degree_ops
)
dag_views
=
list
(
reversed
(
dag_views
))
if
not
self
.
_build_dag_each_worker
:
_LOGGER
.
debug
(
"================== DAG ===================="
)
_LOGGER
.
info
(
"================== DAG ===================="
)
for
idx
,
view
in
enumerate
(
dag_views
):
_LOGGER
.
debug
(
"(VIEW {})"
.
format
(
idx
))
_LOGGER
.
info
(
"(VIEW {})"
.
format
(
idx
))
for
op
in
view
:
_LOGGER
.
debug
(
" [{}]"
.
format
(
op
.
name
))
_LOGGER
.
info
(
" [{}]"
.
format
(
op
.
name
))
for
out_op
in
out_degree_ops
[
op
.
name
]:
_LOGGER
.
debug
(
" - {}"
.
format
(
out_op
.
name
))
_LOGGER
.
debug
(
"-------------------------------------------"
)
_LOGGER
.
info
(
" - {}"
.
format
(
out_op
.
name
))
_LOGGER
.
info
(
"-------------------------------------------"
)
# create channels and virtual ops
virtual_op_name_gen
=
NameGenerator
(
"vir"
)
...
...
@@ -719,6 +719,7 @@ class DAG(object):
channel
=
self
.
_gen_channel
(
channel_name_gen
)
channels
.
append
(
channel
)
op
.
add_input_channel
(
channel
)
_LOGGER
.
info
(
"op:{} add input channel."
.
format
(
op
.
name
))
pred_ops
=
pred_op_of_next_view_op
[
op
.
name
]
if
v_idx
==
0
:
input_channel
=
channel
...
...
@@ -726,6 +727,8 @@ class DAG(object):
# if pred_op is virtual op, it will use ancestors as producers to channel
for
pred_op
in
pred_ops
:
pred_op
.
add_output_channel
(
channel
)
_LOGGER
.
info
(
"pred_op:{} add output channel"
.
format
(
pred_op
.
name
))
processed_op
.
add
(
op
.
name
)
# find same input op to combine channel
for
other_op
in
actual_next_view
[
o_idx
+
1
:]:
...
...
@@ -745,6 +748,7 @@ class DAG(object):
output_channel
=
self
.
_gen_channel
(
channel_name_gen
)
channels
.
append
(
output_channel
)
last_op
.
add_output_channel
(
output_channel
)
_LOGGER
.
info
(
"last op:{} add output channel"
.
format
(
last_op
.
name
))
pack_func
,
unpack_func
=
None
,
None
pack_func
=
response_op
.
pack_response_package
...
...
@@ -752,7 +756,11 @@ class DAG(object):
actual_ops
=
virtual_ops
for
op
in
used_ops
:
if
len
(
op
.
get_input_ops
())
==
0
:
#set special features of the request op.
#1.set unpack function.
#2.set output channel.
unpack_func
=
op
.
unpack_request_package
op
.
add_output_channel
(
input_channel
)
continue
actual_ops
.
append
(
op
)
...
...
python/pipeline/operator.py
浏览文件 @
35c49be2
...
...
@@ -58,13 +58,15 @@ class Op(object):
retry
=
0
,
batch_size
=
None
,
auto_batching_timeout
=
None
,
local_service_handler
=
None
):
local_service_handler
=
None
,
jump_to_ops
=
[]):
# In __init__, all the parameters are just saved and Op is not initialized
if
name
is
None
:
name
=
_op_name_gen
.
next
()
self
.
name
=
name
# to identify the type of OP, it must be globally unique
self
.
concurrency
=
concurrency
# amount of concurrency
self
.
set_input_ops
(
input_ops
)
self
.
set_jump_to_ops
(
jump_to_ops
)
self
.
_local_service_handler
=
local_service_handler
self
.
_server_endpoints
=
server_endpoints
...
...
@@ -99,9 +101,7 @@ class Op(object):
conf: config.yaml
Returns:
None
"""
# init op
if
self
.
concurrency
is
None
:
self
.
concurrency
=
conf
[
"concurrency"
]
if
self
.
_retry
is
None
:
...
...
@@ -372,6 +372,79 @@ class Op(object):
os
.
_exit
(
-
1
)
self
.
_input_ops
.
append
(
op
)
def
get_jump_to_ops
(
self
):
return
self
.
_jump_to_ops
def
set_jump_to_ops
(
self
,
ops
):
"""
Set jump to ops, then, this op can send channeldata to output channel.
Args:
ops: op list to be jumpped
Returns:
None.
"""
if
not
isinstance
(
ops
,
list
):
ops
=
[]
if
ops
is
None
else
[
ops
]
self
.
_jump_to_ops
=
[]
for
op
in
ops
:
if
not
isinstance
(
op
,
Op
):
_LOGGER
.
critical
(
self
.
_log
(
"Failed to set input_ops: input op "
"must be Op type, not {}"
.
format
(
type
(
op
))))
os
.
_exit
(
-
1
)
self
.
_jump_to_ops
.
append
(
op
)
def
is_jump_op
(
self
):
"""
The op has _jump_to_ops members or not.
Args:
None
Returns:
True or False
"""
return
len
(
self
.
_jump_to_ops
)
>
0
def
check_jumping
(
self
,
input_data
):
"""
Check whether to send data to jump ops.WhileOp needs to rewrite
this interface. this function returns False default.
Args:
input_data: input data to be preprocessed
Returns:
True, send data to the output channel of jump ops
False, send data to output channel.
"""
return
False
def
get_output_channels_of_jump_ops
(
self
):
"""
Get output channels of jump ops
Args:
None
Returns:
list of channels
"""
channels
=
[]
if
self
.
is_jump_op
()
is
False
:
return
channels
for
op
in
self
.
_jump_to_ops
:
_LOGGER
.
info
(
"op:{} extend op._get_output_channels:{}"
.
format
(
op
.
name
,
op
.
_get_output_channels
()))
channels
.
extend
(
op
.
_get_output_channels
())
_LOGGER
.
info
(
"get_output_channels_of_jump_ops, channels:{}"
.
format
(
channels
))
return
channels
def
add_input_channel
(
self
,
channel
):
"""
Adding one input channel to the Op. Each op have many front op,
...
...
@@ -410,6 +483,7 @@ class Op(object):
os
.
_exit
(
-
1
)
channel
.
add_producer
(
self
.
name
)
self
.
_outputs
.
append
(
channel
)
_LOGGER
.
info
(
"op:{} add output_channel {}"
.
format
(
self
.
name
,
channel
))
def
clean_output_channels
(
self
):
self
.
_outputs
=
[]
...
...
@@ -424,7 +498,7 @@ class Op(object):
Args:
input_dicts: input data to be preprocessed
data_id: inner unique id,
0 default
data_id: inner unique id,
increase auto
log_id: global unique id for RTT, 0 default
Return:
...
...
@@ -484,12 +558,13 @@ class Op(object):
'''
return
call_result
def
postprocess
(
self
,
input_data
,
fetch_data
,
log_id
=
0
):
def
postprocess
(
self
,
input_data
,
fetch_data
,
data_id
=
0
,
log_id
=
0
):
"""
In postprocess stage, assemble data for next op or output.
Args:
input_data: data returned in preprocess stage, dict(for single predict) or list(for batch predict)
fetch_data: data returned in process stage, dict(for single predict) or list(for batch predict)
data_id: inner unique id, increase auto
log_id: logid, 0 default
Returns:
...
...
@@ -593,7 +668,8 @@ class Op(object):
self
.
device_type
,
self
.
devices
,
self
.
mem_optim
,
self
.
ir_optim
,
self
.
precision
,
self
.
use_mkldnn
,
self
.
mkldnn_cache_capacity
,
self
.
mkldnn_op_list
,
self
.
mkldnn_bf16_op_list
))
self
.
mkldnn_bf16_op_list
,
self
.
is_jump_op
(),
self
.
get_output_channels_of_jump_ops
()))
p
.
daemon
=
True
p
.
start
()
process
.
append
(
p
)
...
...
@@ -629,7 +705,8 @@ class Op(object):
self
.
device_type
,
self
.
devices
,
self
.
mem_optim
,
self
.
ir_optim
,
self
.
precision
,
self
.
use_mkldnn
,
self
.
mkldnn_cache_capacity
,
self
.
mkldnn_op_list
,
self
.
mkldnn_bf16_op_list
))
self
.
mkldnn_bf16_op_list
,
self
.
is_jump_op
(),
self
.
get_output_channels_of_jump_ops
()))
# When a process exits, it attempts to terminate
# all of its daemonic child processes.
t
.
daemon
=
True
...
...
@@ -954,7 +1031,7 @@ class Op(object):
prod_errcode
,
prod_errinfo
=
None
,
None
try
:
postped_data
,
prod_errcode
,
prod_errinfo
=
self
.
postprocess
(
parsed_data_dict
[
data_id
],
midped_data
,
parsed_data_dict
[
data_id
],
midped_data
,
data_id
,
logid_dict
.
get
(
data_id
))
except
Exception
as
e
:
error_info
=
"(data_id={} log_id={}) {} Failed to postprocess: {}"
.
format
(
...
...
@@ -1100,7 +1177,8 @@ class Op(object):
def
_run
(
self
,
concurrency_idx
,
input_channel
,
output_channels
,
is_thread_op
,
trace_buffer
,
model_config
,
workdir
,
thread_num
,
device_type
,
devices
,
mem_optim
,
ir_optim
,
precision
,
use_mkldnn
,
mkldnn_cache_capacity
,
mkldnn_op_list
,
mkldnn_bf16_op_list
):
mkldnn_cache_capacity
,
mkldnn_op_list
,
mkldnn_bf16_op_list
,
is_jump_op
,
output_channels_of_jump_ops
):
"""
_run() is the entry function of OP process / thread model.When client
type is local_predictor in process mode, the CUDA environment needs to
...
...
@@ -1127,6 +1205,8 @@ class Op(object):
mkldnn_cache_capacity: cache capacity of mkldnn, 0 means no limit.
mkldnn_op_list: OP list optimized by mkldnn, None default.
mkldnn_bf16_op_list: OP list optimized by mkldnn bf16, None default.
is_jump_op: OP has jump op list or not, False default.
output_channels_of_jump_ops: all output channels of jump ops.
Returns:
None
...
...
@@ -1267,27 +1347,46 @@ class Op(object):
break
if
len
(
postped_data_dict
)
==
0
:
continue
# push data to channel (if run succ)
start
=
int
(
round
(
_time
()
*
1000000
))
try
:
profile_str
=
profiler
.
gen_profile_str
()
for
data_id
,
postped_data
in
postped_data_dict
.
items
():
if
self
.
_server_use_profile
:
sys
.
stderr
.
write
(
profile_str
)
self
.
_push_to_output_channels
(
data
=
postped_data
,
channels
=
output_channels
,
profile_str
=
profile_str
,
client_need_profile
=
need_profile_dict
[
data_id
],
profile_set
=
profile_dict
[
data_id
])
after_outchannel_time
=
_time
()
_LOGGER
.
debug
(
"(data_id={}) PUSH OUTPUT CHANNEL! op:{} push cost:{} ms"
.
format
(
data_id
,
self
.
name
,
(
after_outchannel_time
-
after_postp_time
)
*
1000
))
_LOGGER
.
debug
(
"(data_id={}) PUSH OUTPUT CHANNEL! op:{} push data:{}"
.
format
(
data_id
,
self
.
name
,
postped_data
.
get_all_data
()))
if
self
.
is_jump_op
()
is
True
and
self
.
check_jumping
(
postped_data_dict
)
is
True
:
# push data to output channel of ops to be jumped
for
data_id
,
postped_data
in
postped_data_dict
.
items
():
if
self
.
_server_use_profile
:
sys
.
stderr
.
write
(
profile_str
)
self
.
_push_to_output_channels
(
data
=
postped_data
,
channels
=
output_channels_of_jump_ops
,
profile_str
=
profile_str
,
client_need_profile
=
need_profile_dict
[
data_id
],
profile_set
=
profile_dict
[
data_id
])
after_outchannel_time
=
_time
()
_LOGGER
.
debug
(
"(data_id={}) PUSH OUTPUT CHANNEL OF JUMP OPs! op:{} push cost:{} ms"
.
format
(
data_id
,
self
.
name
,
(
after_outchannel_time
-
after_postp_time
)
*
1000
))
else
:
# push data to output channel.
for
data_id
,
postped_data
in
postped_data_dict
.
items
():
if
self
.
_server_use_profile
:
sys
.
stderr
.
write
(
profile_str
)
self
.
_push_to_output_channels
(
data
=
postped_data
,
channels
=
output_channels
,
profile_str
=
profile_str
,
client_need_profile
=
need_profile_dict
[
data_id
],
profile_set
=
profile_dict
[
data_id
])
after_outchannel_time
=
_time
()
_LOGGER
.
debug
(
"(data_id={}) PUSH OUTPUT CHANNEL! op:{} push cost:{} ms"
.
format
(
data_id
,
self
.
name
,
(
after_outchannel_time
-
after_postp_time
)
*
1000
))
except
ChannelStopError
:
_LOGGER
.
debug
(
"{} Stop."
.
format
(
op_info_prefix
))
self
.
_finalize
(
is_thread_op
)
...
...
@@ -1410,7 +1509,7 @@ class RequestOp(Op):
for
idx
,
key
in
enumerate
(
request
.
key
):
dict_data
[
key
]
=
request
.
value
[
idx
]
log_id
=
request
.
logid
_LOGGER
.
info
(
"RequestOp unpack one request. log_id:{}, clientip:{}
\
_LOGGER
.
debug
(
"RequestOp unpack one request. log_id:{}, clientip:{}
\
name:{}, method:{}"
.
format
(
log_id
,
request
.
clientip
,
request
.
name
,
request
.
method
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录