Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
349b6346
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
349b6346
编写于
12月 10, 2019
作者:
M
MRXLT
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'upstream/develop' into develop
上级
0ba28a79
b77f6e25
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
115 addition
and
48 deletion
+115
-48
README.md
README.md
+12
-11
cube/cube-transfer/src/transfer/deployer.go
cube/cube-transfer/src/transfer/deployer.go
+35
-30
elastic-ctr/client/demo/elastic_ctr.py
elastic-ctr/client/demo/elastic_ctr.py
+68
-7
未找到文件。
README.md
浏览文件 @
349b6346
# 概述
PaddlePaddle是百度开源的机器学习框架,广泛支持各种深度学习模型的定制化开发; Paddle serving是Paddle的在线预测部分,与Paddle模型训练环节无缝衔接,提供机器学习预测云服务。
PaddlePaddle是百度开源的机器学习框架,广泛支持各种深度学习模型的定制化开发; Paddle serving是PaddlePaddle的在线预估服务框架,通过加载PaddlePaddle训练得到的模型,利用PaddlePaddle的预测库,提供机器学习预测云服务。
# 文档
[
设计文档
](
doc/DESIGN.md
)
[
从零开始写一个预测服务
](
doc/CREATING.md
)
[
编译安装
](
doc/INSTALL.md
)
[
FAQ
](
doc/FAQ.md
)
# 框架简介
...
...
@@ -80,13 +91,3 @@ Paddle serving框架为策略工程师提供以下三层面的功能性扩展:
`-- tools # CI工具
`-- codestyle
```
# 文档
[
设计文档
](
doc/DESIGN.md
)
[
从零开始写一个预测服务
](
doc/CREATING.md
)
[
编译安装
](
doc/INSTALL.md
)
[
FAQ
](
doc/FAQ.md
)
cube/cube-transfer/src/transfer/deployer.go
浏览文件 @
349b6346
...
...
@@ -81,16 +81,17 @@ func CmdInstsDownload() {
}
}
for
i
,
inst
:=
range
Dict
.
Instances
{
err
:=
<-
chs
[
i
]
logex
.
Noticef
(
"[instance resp]download:%v"
,
Dict
.
Instances
)
if
err
!=
nil
||
keyAndRespSlice
[
i
]
.
Success
!=
"0"
{
logex
.
Warningf
(
"cmd cube online downlaod of %v:%v, shard:%v failed"
,
inst
.
AgentIp
,
inst
.
AgentPort
,
inst
.
Shard
)
continue
}
if
inst
.
Status
<
dict
.
Instance_Status_Download_Succ
{
Dict
.
Instances
[
i
]
.
Status
=
dict
.
Instance_Status_Download_Succ
Dict
.
Instances
[
i
]
.
DownloadedTime
=
int
(
time
.
Now
()
.
Unix
())
Dict
.
DownloadSuccInsts
++
if
inst
.
Status
!=
dict
.
Instance_Status_Download_Succ
{
err
:=
<-
chs
[
i
]
if
err
!=
nil
||
keyAndRespSlice
[
i
]
.
Success
!=
"0"
{
logex
.
Warningf
(
"cmd cube online downlaod of %v:%v, shard:%v failed"
,
inst
.
AgentIp
,
inst
.
AgentPort
,
inst
.
Shard
)
continue
}
if
inst
.
Status
<
dict
.
Instance_Status_Download_Succ
{
Dict
.
Instances
[
i
]
.
Status
=
dict
.
Instance_Status_Download_Succ
Dict
.
Instances
[
i
]
.
DownloadedTime
=
int
(
time
.
Now
()
.
Unix
())
Dict
.
DownloadSuccInsts
++
}
}
}
if
Dict
.
DownloadSuccInsts
==
Dict
.
InstancesNum
{
...
...
@@ -130,16 +131,18 @@ func CmdInstsReload() {
}
}
for
i
,
inst
:=
range
Dict
.
Instances
{
err
:=
<-
chs
[
i
]
logex
.
Noticef
(
"[instance resp]reload:%v"
,
Dict
.
Instances
)
if
err
!=
nil
||
keyAndRespSlice
[
i
]
.
Success
!=
"0"
{
logex
.
Warningf
(
"cmd cube online reload of %v:%v, shard:%v failed"
,
inst
.
AgentIp
,
inst
.
AgentPort
,
inst
.
Shard
)
continue
}
if
inst
.
Status
<
dict
.
Instance_Status_Reload_Succ
{
Dict
.
Instances
[
i
]
.
Status
=
dict
.
Instance_Status_Reload_Succ
Dict
.
Instances
[
i
]
.
ReloadedTime
=
int
(
time
.
Now
()
.
Unix
())
Dict
.
ReloadSuccInsts
++
if
inst
.
Status
!=
dict
.
Instance_Status_Reload_Succ
{
err
:=
<-
chs
[
i
]
logex
.
Noticef
(
"[instance resp]reload:%v"
,
Dict
.
Instances
)
if
err
!=
nil
||
keyAndRespSlice
[
i
]
.
Success
!=
"0"
{
logex
.
Warningf
(
"cmd cube online reload of %v:%v, shard:%v failed"
,
inst
.
AgentIp
,
inst
.
AgentPort
,
inst
.
Shard
)
continue
}
if
inst
.
Status
<
dict
.
Instance_Status_Reload_Succ
{
Dict
.
Instances
[
i
]
.
Status
=
dict
.
Instance_Status_Reload_Succ
Dict
.
Instances
[
i
]
.
ReloadedTime
=
int
(
time
.
Now
()
.
Unix
())
Dict
.
ReloadSuccInsts
++
}
}
}
if
Dict
.
ReloadSuccInsts
==
Dict
.
InstancesNum
{
...
...
@@ -179,16 +182,18 @@ func CmdInstsEnable() {
}
}
for
i
,
inst
:=
range
Dict
.
Instances
{
err
:=
<-
chs
[
i
]
logex
.
Noticef
(
"[instance resp]enable:%v"
,
Dict
.
Instances
)
if
err
!=
nil
||
keyAndRespSlice
[
i
]
.
Success
!=
"0"
{
logex
.
Warningf
(
"cmd cube online enable of %v:%v, shard:%v failed"
,
inst
.
AgentIp
,
inst
.
AgentPort
,
inst
.
Shard
)
continue
}
if
inst
.
Status
<
dict
.
Instance_Status_Enable_Succ
{
Dict
.
Instances
[
i
]
.
Status
=
dict
.
Instance_Status_Enable_Succ
Dict
.
Instances
[
i
]
.
EnabledTime
=
int
(
time
.
Now
()
.
Unix
())
Dict
.
EnableSuccInsts
++
if
inst
.
Status
!=
dict
.
Instance_Status_Enable_Succ
{
err
:=
<-
chs
[
i
]
logex
.
Noticef
(
"[instance resp]enable:%v"
,
Dict
.
Instances
)
if
err
!=
nil
||
keyAndRespSlice
[
i
]
.
Success
!=
"0"
{
logex
.
Warningf
(
"cmd cube online enable of %v:%v, shard:%v failed"
,
inst
.
AgentIp
,
inst
.
AgentPort
,
inst
.
Shard
)
continue
}
if
inst
.
Status
<
dict
.
Instance_Status_Enable_Succ
{
Dict
.
Instances
[
i
]
.
Status
=
dict
.
Instance_Status_Enable_Succ
Dict
.
Instances
[
i
]
.
EnabledTime
=
int
(
time
.
Now
()
.
Unix
())
Dict
.
EnableSuccInsts
++
}
}
}
if
Dict
.
EnableSuccInsts
==
Dict
.
InstancesNum
{
...
...
elastic-ctr/client/demo/elastic_ctr.py
浏览文件 @
349b6346
...
...
@@ -19,7 +19,7 @@ import os
from
elastic_ctr_api
import
ElasticCTRAPI
BATCH_SIZE
=
3
BATCH_SIZE
=
10
SERVING_IP
=
"127.0.0.1"
SLOT_CONF_FILE
=
"./conf/slot.conf"
CTR_EMBEDDING_TABLE_SIZE
=
100000001
...
...
@@ -33,6 +33,59 @@ def str2long(str):
return
int
(
str
)
def
tied_rank
(
x
):
"""
Computes the tied rank of elements in x.
This function computes the tied rank of elements in x.
Parameters
----------
x : list of numbers, numpy array
Returns
-------
score : list of numbers
The tied rank f each element in x
"""
sorted_x
=
sorted
(
zip
(
x
,
range
(
len
(
x
))))
r
=
[
0
for
k
in
x
]
cur_val
=
sorted_x
[
0
][
0
]
last_rank
=
0
for
i
in
range
(
len
(
sorted_x
)):
if
cur_val
!=
sorted_x
[
i
][
0
]:
cur_val
=
sorted_x
[
i
][
0
]
for
j
in
range
(
last_rank
,
i
):
r
[
sorted_x
[
j
][
1
]]
=
float
(
last_rank
+
1
+
i
)
/
2.0
last_rank
=
i
if
i
==
len
(
sorted_x
)
-
1
:
for
j
in
range
(
last_rank
,
i
+
1
):
r
[
sorted_x
[
j
][
1
]]
=
float
(
last_rank
+
i
+
2
)
/
2.0
return
r
def
auc
(
actual
,
posterior
):
"""
Computes the area under the receiver-operater characteristic (AUC)
This function computes the AUC error metric for binary classification.
Parameters
----------
actual : list of binary numbers, numpy array
The ground truth value
posterior : same type as actual
Defines a ranking on the binary numbers, from most likely to
be positive to least likely to be positive.
Returns
-------
score : double
The mean squared error between actual and posterior
"""
r
=
tied_rank
(
posterior
)
num_positive
=
len
([
0
for
x
in
actual
if
x
==
1
])
num_negative
=
len
(
actual
)
-
num_positive
sum_positive
=
sum
([
r
[
i
]
for
i
in
range
(
len
(
r
))
if
actual
[
i
]
==
1
])
auc
=
((
sum_positive
-
num_positive
*
(
num_positive
+
1
)
/
2.0
)
/
(
num_negative
*
num_positive
))
return
auc
def
data_reader
(
data_file
,
samples
,
labels
):
if
not
os
.
path
.
exists
(
data_file
):
print
(
"Path %s not exist"
%
data_file
)
...
...
@@ -66,7 +119,7 @@ def data_reader(data_file, samples, labels):
sample
[
x
]
=
[
0
]
samples
.
append
(
sample
)
if
__name__
==
"__main__"
:
""" main
"""
...
...
@@ -89,8 +142,10 @@ if __name__ == "__main__":
sys
.
exit
(
-
1
)
ret
=
data_reader
(
sys
.
argv
[
4
],
samples
,
labels
)
print
(
len
(
samples
))
correct
=
0
wrong_label_1_count
=
0
result_list
=
[]
for
i
in
range
(
0
,
len
(
samples
)
-
BATCH_SIZE
,
BATCH_SIZE
):
api
.
clear
()
batch
=
samples
[
i
:
i
+
BATCH_SIZE
]
...
...
@@ -110,6 +165,7 @@ if __name__ == "__main__":
idx
=
0
for
x
in
predictions
:
result_list
.
append
(
x
[
"prob1"
])
if
x
[
"prob0"
]
>=
x
[
"prob1"
]:
pred
=
0
else
:
...
...
@@ -118,9 +174,14 @@ if __name__ == "__main__":
if
labels
[
i
+
idx
]
==
pred
:
correct
+=
1
else
:
print
(
"id=%d predict incorrect: pred=%d label=%d (%f %f)"
%
(
i
+
idx
,
pred
,
labels
[
i
+
idx
],
x
[
"prob0"
],
x
[
"prob1"
]))
#if labels[i + idx] == 1:
# wrong_label_1_count += 1
# print("error label=1 count", wrong_label_1_count)
#print("id=%d predict incorrect: pred=%d label=%d (%f %f)" %
# (i + idx, pred, labels[i + idx], x["prob0"], x["prob1"]))
pass
idx
=
idx
+
1
print
(
"Acc=%f"
%
(
float
(
correct
)
/
len
(
samples
)))
#print("Acc=%f" % (float(correct) / len(samples)))
print
(
"auc = "
,
auc
(
labels
,
result_list
)
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录