未验证 提交 2abab2d8 编写于 作者: T TeslaZhao 提交者: GitHub

Merge pull request #48 from PaddlePaddle/develop

Develop
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
......@@ -33,9 +33,7 @@ if (WITH_PYTHON)
add_custom_target(general_model_config_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
add_dependencies(general_model_config_py_proto general_model_config_py_proto_init)
py_grpc_proto_compile(multi_lang_general_model_service_py_proto SRCS proto/multi_lang_general_model_service.proto)
add_custom_target(multi_lang_general_model_service_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
add_dependencies(multi_lang_general_model_service_py_proto multi_lang_general_model_service_py_proto_init)
if (CLIENT)
py_proto_compile(sdk_configure_py_proto SRCS proto/sdk_configure.proto)
......@@ -53,11 +51,7 @@ if (WITH_PYTHON)
COMMENT "Copy generated general_model_config proto file into directory paddle_serving_client/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
add_custom_command(TARGET multi_lang_general_model_service_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_client/proto
COMMAND cp -f *.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_client/proto
COMMENT "Copy generated multi_lang_general_model_service proto file into directory paddle_serving_client/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
endif()
if (APP)
......@@ -84,11 +78,6 @@ if (WITH_PYTHON)
COMMENT "Copy generated general_model_config proto file into directory paddle_serving_server/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
add_custom_command(TARGET multi_lang_general_model_service_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server/proto
COMMAND cp -f *.py ${PADDLE_SERVING_BINARY_DIR}/python/paddle_serving_server/proto
COMMENT "Copy generated multi_lang_general_model_service proto file into directory paddle_serving_server/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
endif()
endif()
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
syntax = "proto2";
package baidu.paddle_serving.multi_lang;
option java_multiple_files = true;
option java_package = "io.paddle.serving.grpc";
option java_outer_classname = "ServingProto";
message Tensor {
optional bytes data = 1;
repeated int32 int_data = 2;
repeated int64 int64_data = 3;
repeated float float_data = 4;
optional int32 elem_type = 5;
repeated int32 shape = 6;
repeated int32 lod = 7; // only for fetch tensor currently
};
message FeedInst { repeated Tensor tensor_array = 1; };
message FetchInst { repeated Tensor tensor_array = 1; };
message InferenceRequest {
repeated FeedInst insts = 1;
repeated string feed_var_names = 2;
repeated string fetch_var_names = 3;
required bool is_python = 4 [ default = false ];
required uint64 log_id = 5 [ default = 0 ];
};
message InferenceResponse {
repeated ModelOutput outputs = 1;
optional string tag = 2;
required int32 err_code = 3;
};
message ModelOutput {
repeated FetchInst insts = 1;
optional string engine_name = 2;
}
message SetTimeoutRequest { required int32 timeout_ms = 1; }
message SimpleResponse { required int32 err_code = 1; }
message GetClientConfigRequest {}
message GetClientConfigResponse { required string client_config_str = 1; }
service MultiLangGeneralModelService {
rpc Inference(InferenceRequest) returns (InferenceResponse) {}
rpc SetTimeout(SetTimeoutRequest) returns (SimpleResponse) {}
rpc GetClientConfig(GetClientConfigRequest)
returns (GetClientConfigResponse) {}
};
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
......@@ -207,7 +207,7 @@ class PredictorClient {
void init_gflags(std::vector<std::string> argv);
int init(const std::vector<std::string> &client_conf);
int init(const std::vector<std::string>& client_conf);
void set_predictor_conf(const std::string& conf_path,
const std::string& conf_file);
......@@ -218,23 +218,22 @@ class PredictorClient {
int destroy_predictor();
int numpy_predict(
const std::vector<std::vector<py::array_t<float>>>& float_feed_batch,
const std::vector<std::string>& float_feed_name,
const std::vector<std::vector<int>>& float_shape,
const std::vector<std::vector<int>>& float_lod_slot_batch,
const std::vector<std::vector<py::array_t<int64_t>>>& int_feed_batch,
const std::vector<std::string>& int_feed_name,
const std::vector<std::vector<int>>& int_shape,
const std::vector<std::vector<int>>& int_lod_slot_batch,
const std::vector<std::vector<std::string>>& string_feed_batch,
const std::vector<std::string>& string_feed_name,
const std::vector<std::vector<int>>& string_shape,
const std::vector<std::vector<int>>& string_lod_slot_batch,
const std::vector<std::string>& fetch_name,
PredictorRes& predict_res_batch, // NOLINT
const int& pid,
const uint64_t log_id);
int numpy_predict(const std::vector<py::array_t<float>>& float_feed,
const std::vector<std::string>& float_feed_name,
const std::vector<std::vector<int>>& float_shape,
const std::vector<std::vector<int>>& float_lod_slot_batch,
const std::vector<py::array_t<int64_t>>& int_feed,
const std::vector<std::string>& int_feed_name,
const std::vector<std::vector<int>>& int_shape,
const std::vector<std::vector<int>>& int_lod_slot_batch,
const std::vector<std::string>& string_feed,
const std::vector<std::string>& string_feed_name,
const std::vector<std::vector<int>>& string_shape,
const std::vector<std::vector<int>>& string_lod_slot_batch,
const std::vector<std::string>& fetch_name,
PredictorRes& predict_res_batch, // NOLINT
const int& pid,
const uint64_t log_id);
private:
PredictorApi _api;
......@@ -243,6 +242,7 @@ class PredictorClient {
std::string _predictor_path;
std::string _conf_file;
std::map<std::string, int> _feed_name_to_idx;
std::vector<std::string> _feed_name;
std::map<std::string, int> _fetch_name_to_idx;
std::map<std::string, std::string> _fetch_name_to_var_name;
std::map<std::string, int> _fetch_name_to_type;
......
......@@ -25,8 +25,6 @@ using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::general_model::FetchInst;
enum ProtoDataType { P_INT64, P_FLOAT32, P_INT32, P_STRING };
std::once_flag gflags_init_flag;
namespace py = pybind11;
......@@ -68,9 +66,13 @@ int PredictorClient::init(const std::vector<std::string> &conf_file) {
_fetch_name_to_idx.clear();
_shape.clear();
int feed_var_num = model_config.feed_var_size();
_feed_name.clear();
VLOG(2) << "feed var num: " << feed_var_num;
for (int i = 0; i < feed_var_num; ++i) {
_feed_name_to_idx[model_config.feed_var(i).alias_name()] = i;
VLOG(2) << "feed [" << i << "]"
<< " name: " << model_config.feed_var(i).name();
_feed_name.push_back(model_config.feed_var(i).name());
VLOG(2) << "feed alias name: " << model_config.feed_var(i).alias_name()
<< " index: " << i;
std::vector<int> tmp_feed_shape;
......@@ -146,15 +148,15 @@ int PredictorClient::create_predictor() {
}
int PredictorClient::numpy_predict(
const std::vector<std::vector<py::array_t<float>>> &float_feed_batch,
const std::vector<py::array_t<float>> &float_feed,
const std::vector<std::string> &float_feed_name,
const std::vector<std::vector<int>> &float_shape,
const std::vector<std::vector<int>> &float_lod_slot_batch,
const std::vector<std::vector<py::array_t<int64_t>>> &int_feed_batch,
const std::vector<py::array_t<int64_t>> &int_feed,
const std::vector<std::string> &int_feed_name,
const std::vector<std::vector<int>> &int_shape,
const std::vector<std::vector<int>> &int_lod_slot_batch,
const std::vector<std::vector<std::string>> &string_feed_batch,
const std::vector<std::string> &string_feed,
const std::vector<std::string> &string_feed_name,
const std::vector<std::vector<int>> &string_shape,
const std::vector<std::vector<int>> &string_lod_slot_batch,
......@@ -162,12 +164,6 @@ int PredictorClient::numpy_predict(
PredictorRes &predict_res_batch,
const int &pid,
const uint64_t log_id) {
int batch_size = std::max(float_feed_batch.size(), int_feed_batch.size());
batch_size = batch_size > string_feed_batch.size() ? batch_size
: string_feed_batch.size();
VLOG(2) << "batch size: " << batch_size;
// batch_size must be 1, cause batch is already in Tensor.
// I suggest to remove the outside vector<>.
predict_res_batch.clear();
Timer timeline;
int64_t preprocess_start = timeline.TimeStampUS();
......@@ -190,136 +186,122 @@ int PredictorClient::numpy_predict(
}
int vec_idx = 0;
// batch_size can only be 1, cause batch is already in Tensor.
// if batch_size is not 1, error will occur in C++ part.
for (int bi = 0; bi < batch_size; bi++) {
VLOG(2) << "prepare batch " << bi;
std::vector<Tensor *> tensor_vec;
FeedInst *inst = req.add_insts();
std::vector<py::array_t<float>> float_feed = float_feed_batch[bi];
std::vector<py::array_t<int64_t>> int_feed = int_feed_batch[bi];
std::vector<std::string> string_feed = string_feed_batch[bi];
for (auto &name : float_feed_name) {
tensor_vec.push_back(inst->add_tensor_array());
}
for (auto &name : int_feed_name) {
tensor_vec.push_back(inst->add_tensor_array());
}
// batch is already in Tensor.
std::vector<Tensor *> tensor_vec;
for (auto &name : string_feed_name) {
tensor_vec.push_back(inst->add_tensor_array());
}
for (auto &name : float_feed_name) {
tensor_vec.push_back(req.add_tensor());
}
VLOG(2) << "batch [" << bi << "] "
<< "prepared";
for (auto &name : int_feed_name) {
tensor_vec.push_back(req.add_tensor());
}
vec_idx = 0;
for (auto &name : float_feed_name) {
int idx = _feed_name_to_idx[name];
if (idx >= tensor_vec.size()) {
LOG(ERROR) << "idx > tensor_vec.size()";
return -1;
}
int nbytes = float_feed[vec_idx].nbytes();
void *rawdata_ptr = (void *)(float_feed[vec_idx].data(0));
int total_number = float_feed[vec_idx].size();
Tensor *tensor = tensor_vec[idx];
VLOG(2) << "prepare float feed " << name << " shape size "
<< float_shape[vec_idx].size();
for (uint32_t j = 0; j < float_shape[vec_idx].size(); ++j) {
tensor->add_shape(float_shape[vec_idx][j]);
}
for (uint32_t j = 0; j < float_lod_slot_batch[vec_idx].size(); ++j) {
tensor->add_lod(float_lod_slot_batch[vec_idx][j]);
}
tensor->set_elem_type(P_FLOAT32);
for (auto &name : string_feed_name) {
tensor_vec.push_back(req.add_tensor());
}
tensor->mutable_float_data()->Resize(total_number, 0);
memcpy(tensor->mutable_float_data()->mutable_data(), rawdata_ptr, nbytes);
vec_idx++;
vec_idx = 0;
for (auto &name : float_feed_name) {
int idx = _feed_name_to_idx[name];
if (idx >= tensor_vec.size()) {
LOG(ERROR) << "idx > tensor_vec.size()";
return -1;
}
VLOG(2) << "prepare float feed " << name << " idx " << idx;
int nbytes = float_feed[vec_idx].nbytes();
void *rawdata_ptr = (void *)(float_feed[vec_idx].data(0));
int total_number = float_feed[vec_idx].size();
Tensor *tensor = tensor_vec[idx];
VLOG(2) << "prepare float feed " << name << " shape size "
<< float_shape[vec_idx].size();
for (uint32_t j = 0; j < float_shape[vec_idx].size(); ++j) {
tensor->add_shape(float_shape[vec_idx][j]);
}
for (uint32_t j = 0; j < float_lod_slot_batch[vec_idx].size(); ++j) {
tensor->add_lod(float_lod_slot_batch[vec_idx][j]);
}
tensor->set_elem_type(P_FLOAT32);
VLOG(2) << "batch [" << bi << "] "
<< "float feed value prepared";
tensor->set_name(_feed_name[idx]);
tensor->set_alias_name(name);
vec_idx = 0;
for (auto &name : int_feed_name) {
int idx = _feed_name_to_idx[name];
if (idx >= tensor_vec.size()) {
LOG(ERROR) << "idx > tensor_vec.size()";
return -1;
}
Tensor *tensor = tensor_vec[idx];
int nbytes = int_feed[vec_idx].nbytes();
void *rawdata_ptr = (void *)(int_feed[vec_idx].data(0));
int total_number = int_feed[vec_idx].size();
tensor->mutable_float_data()->Resize(total_number, 0);
memcpy(tensor->mutable_float_data()->mutable_data(), rawdata_ptr, nbytes);
vec_idx++;
}
for (uint32_t j = 0; j < int_shape[vec_idx].size(); ++j) {
tensor->add_shape(int_shape[vec_idx][j]);
}
for (uint32_t j = 0; j < int_lod_slot_batch[vec_idx].size(); ++j) {
tensor->add_lod(int_lod_slot_batch[vec_idx][j]);
}
tensor->set_elem_type(_type[idx]);
if (_type[idx] == P_INT64) {
tensor->mutable_int64_data()->Resize(total_number, 0);
memcpy(
tensor->mutable_int64_data()->mutable_data(), rawdata_ptr, nbytes);
} else {
tensor->mutable_int_data()->Resize(total_number, 0);
memcpy(tensor->mutable_int_data()->mutable_data(), rawdata_ptr, nbytes);
}
vec_idx++;
vec_idx = 0;
for (auto &name : int_feed_name) {
int idx = _feed_name_to_idx[name];
if (idx >= tensor_vec.size()) {
LOG(ERROR) << "idx > tensor_vec.size()";
return -1;
}
Tensor *tensor = tensor_vec[idx];
int nbytes = int_feed[vec_idx].nbytes();
void *rawdata_ptr = (void *)(int_feed[vec_idx].data(0));
int total_number = int_feed[vec_idx].size();
VLOG(2) << "batch [" << bi << "] "
<< "int feed value prepared";
for (uint32_t j = 0; j < int_shape[vec_idx].size(); ++j) {
tensor->add_shape(int_shape[vec_idx][j]);
}
for (uint32_t j = 0; j < int_lod_slot_batch[vec_idx].size(); ++j) {
tensor->add_lod(int_lod_slot_batch[vec_idx][j]);
}
tensor->set_elem_type(_type[idx]);
tensor->set_name(_feed_name[idx]);
tensor->set_alias_name(name);
if (_type[idx] == P_INT64) {
tensor->mutable_int64_data()->Resize(total_number, 0);
memcpy(tensor->mutable_int64_data()->mutable_data(), rawdata_ptr, nbytes);
} else {
tensor->mutable_int_data()->Resize(total_number, 0);
memcpy(tensor->mutable_int_data()->mutable_data(), rawdata_ptr, nbytes);
}
vec_idx++;
}
vec_idx = 0;
for (auto &name : string_feed_name) {
int idx = _feed_name_to_idx[name];
if (idx >= tensor_vec.size()) {
LOG(ERROR) << "idx > tensor_vec.size()";
return -1;
}
Tensor *tensor = tensor_vec[idx];
vec_idx = 0;
for (auto &name : string_feed_name) {
int idx = _feed_name_to_idx[name];
if (idx >= tensor_vec.size()) {
LOG(ERROR) << "idx > tensor_vec.size()";
return -1;
}
Tensor *tensor = tensor_vec[idx];
for (uint32_t j = 0; j < string_shape[vec_idx].size(); ++j) {
tensor->add_shape(string_shape[vec_idx][j]);
}
for (uint32_t j = 0; j < string_lod_slot_batch[vec_idx].size(); ++j) {
tensor->add_lod(string_lod_slot_batch[vec_idx][j]);
}
tensor->set_elem_type(P_STRING);
const int string_shape_size = string_shape[vec_idx].size();
// string_shape[vec_idx] = [1];cause numpy has no datatype of string.
// we pass string via vector<vector<string> >.
if (string_shape_size != 1) {
LOG(ERROR) << "string_shape_size should be 1-D, but received is : "
<< string_shape_size;
return -1;
}
switch (string_shape_size) {
case 1: {
tensor->add_data(string_feed[vec_idx]);
break;
}
for (uint32_t j = 0; j < string_shape[vec_idx].size(); ++j) {
tensor->add_shape(string_shape[vec_idx][j]);
}
for (uint32_t j = 0; j < string_lod_slot_batch[vec_idx].size(); ++j) {
tensor->add_lod(string_lod_slot_batch[vec_idx][j]);
}
tensor->set_elem_type(P_STRING);
tensor->set_name(_feed_name[idx]);
tensor->set_alias_name(name);
const int string_shape_size = string_shape[vec_idx].size();
// string_shape[vec_idx] = [1];cause numpy has no datatype of string.
// we pass string via vector<vector<string> >.
if (string_shape_size != 1) {
LOG(ERROR) << "string_shape_size should be 1-D, but received is : "
<< string_shape_size;
return -1;
}
switch (string_shape_size) {
case 1: {
tensor->add_data(string_feed[vec_idx]);
break;
}
vec_idx++;
}
VLOG(2) << "batch [" << bi << "] "
<< "string feed value prepared";
vec_idx++;
}
int64_t preprocess_end = timeline.TimeStampUS();
int64_t client_infer_start = timeline.TimeStampUS();
Response res;
int64_t client_infer_end = 0;
......@@ -351,19 +333,18 @@ int PredictorClient::numpy_predict(
int idx = 0;
for (auto &name : fetch_name) {
// int idx = _fetch_name_to_idx[name];
int shape_size = output.insts(0).tensor_array(idx).shape_size();
int shape_size = output.tensor(idx).shape_size();
VLOG(2) << "fetch var " << name << " index " << idx << " shape size "
<< shape_size;
model._shape_map[name].resize(shape_size);
for (int i = 0; i < shape_size; ++i) {
model._shape_map[name][i] =
output.insts(0).tensor_array(idx).shape(i);
model._shape_map[name][i] = output.tensor(idx).shape(i);
}
int lod_size = output.insts(0).tensor_array(idx).lod_size();
int lod_size = output.tensor(idx).lod_size();
if (lod_size > 0) {
model._lod_map[name].resize(lod_size);
for (int i = 0; i < lod_size; ++i) {
model._lod_map[name][i] = output.insts(0).tensor_array(idx).lod(i);
model._lod_map[name][i] = output.tensor(idx).lod(i);
}
}
idx += 1;
......@@ -375,22 +356,22 @@ int PredictorClient::numpy_predict(
// int idx = _fetch_name_to_idx[name];
if (_fetch_name_to_type[name] == P_INT64) {
VLOG(2) << "ferch var " << name << "type int64";
int size = output.insts(0).tensor_array(idx).int64_data_size();
int size = output.tensor(idx).int64_data_size();
model._int64_value_map[name] = std::vector<int64_t>(
output.insts(0).tensor_array(idx).int64_data().begin(),
output.insts(0).tensor_array(idx).int64_data().begin() + size);
output.tensor(idx).int64_data().begin(),
output.tensor(idx).int64_data().begin() + size);
} else if (_fetch_name_to_type[name] == P_FLOAT32) {
VLOG(2) << "fetch var " << name << "type float";
int size = output.insts(0).tensor_array(idx).float_data_size();
int size = output.tensor(idx).float_data_size();
model._float_value_map[name] = std::vector<float>(
output.insts(0).tensor_array(idx).float_data().begin(),
output.insts(0).tensor_array(idx).float_data().begin() + size);
output.tensor(idx).float_data().begin(),
output.tensor(idx).float_data().begin() + size);
} else if (_fetch_name_to_type[name] == P_INT32) {
VLOG(2) << "fetch var " << name << "type int32";
int size = output.insts(0).tensor_array(idx).int_data_size();
int size = output.tensor(idx).int_data_size();
model._int32_value_map[name] = std::vector<int32_t>(
output.insts(0).tensor_array(idx).int_data().begin(),
output.insts(0).tensor_array(idx).int_data().begin() + size);
output.tensor(idx).int_data().begin(),
output.tensor(idx).int_data().begin() + size);
}
idx += 1;
}
......
......@@ -97,33 +97,31 @@ PYBIND11_MODULE(serving_client, m) {
[](PredictorClient &self) { self.destroy_predictor(); })
.def("numpy_predict",
[](PredictorClient &self,
const std::vector<std::vector<py::array_t<float>>>
&float_feed_batch,
const std::vector<py::array_t<float>> &float_feed,
const std::vector<std::string> &float_feed_name,
const std::vector<std::vector<int>> &float_shape,
const std::vector<std::vector<int>> &float_lod_slot_batch,
const std::vector<std::vector<py::array_t<int64_t>>>
&int_feed_batch,
const std::vector<py::array_t<int64_t>> &int_feed,
const std::vector<std::string> &int_feed_name,
const std::vector<std::vector<int>> &int_shape,
const std::vector<std::vector<int>> &int_lod_slot_batch,
const std::vector<std::vector<std::string>>& string_feed_batch,
const std::vector<std::string>& string_feed_name,
const std::vector<std::vector<int>>& string_shape,
const std::vector<std::vector<int>>& string_lod_slot_batch,
const std::vector<std::string> &string_feed,
const std::vector<std::string> &string_feed_name,
const std::vector<std::vector<int>> &string_shape,
const std::vector<std::vector<int>> &string_lod_slot_batch,
const std::vector<std::string> &fetch_name,
PredictorRes &predict_res_batch,
const int &pid,
const uint64_t log_id) {
return self.numpy_predict(float_feed_batch,
return self.numpy_predict(float_feed,
float_feed_name,
float_shape,
float_lod_slot_batch,
int_feed_batch,
int_feed,
int_feed_name,
int_shape,
int_lod_slot_batch,
string_feed_batch,
string_feed,
string_feed_name,
string_shape,
string_lod_slot_batch,
......
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/general_copy_op.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include "core/general-server/op/general_infer_helper.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/util/include/timer.h"
namespace baidu {
namespace paddle_serving {
namespace serving {
using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
int GeneralCopyOp::inference() {
// reade request from client
const std::vector<std::string> pre_node_names = pre_names();
if (pre_node_names.size() != 1) {
LOG(ERROR) << "This op(" << op_name()
<< ") can only have one predecessor op, but received "
<< pre_node_names.size();
return -1;
}
const std::string pre_name = pre_node_names[0];
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
uint64_t log_id = input_blob->GetLogId();
VLOG(2) << "(logid=" << log_id << ") precedent name: " << pre_name;
const TensorVector *in = &input_blob->tensor_vector;
VLOG(2) << "(logid=" << log_id << ") input size: " << in->size();
int batch_size = input_blob->GetBatchSize();
int input_var_num = 0;
GeneralBlob *res = mutable_data<GeneralBlob>();
res->SetLogId(log_id);
TensorVector *out = &res->tensor_vector;
VLOG(2) << "(logid=" << log_id << ") input batch size: " << batch_size;
res->SetBatchSize(batch_size);
if (!res) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed get op tls reader object output";
}
Timer timeline;
int64_t start = timeline.TimeStampUS();
VLOG(2) << "(logid=" << log_id << ") Going to init lod tensor";
for (int i = 0; i < in->size(); ++i) {
paddle::PaddleTensor lod_tensor;
CopyLod(&in->at(i), &lod_tensor);
lod_tensor.dtype = in->at(i).dtype;
lod_tensor.name = in->at(i).name;
VLOG(2) << "(logid=" << log_id << ") lod tensor [" << i
<< "].name = " << lod_tensor.name;
out->push_back(lod_tensor);
}
VLOG(2) << "(logid=" << log_id << ") pack done.";
for (int i = 0; i < out->size(); ++i) {
int64_t *src_ptr = static_cast<int64_t *>(in->at(i).data.data());
out->at(i).data.Resize(out->at(i).lod[0].back() * sizeof(int64_t));
out->at(i).shape = {out->at(i).lod[0].back(), 1};
int64_t *tgt_ptr = static_cast<int64_t *>(out->at(i).data.data());
for (int j = 0; j < out->at(i).lod[0].back(); ++j) {
tgt_ptr[j] = src_ptr[j];
}
}
VLOG(2) << "(logid=" << log_id << ") output done.";
timeline.Pause();
int64_t end = timeline.TimeStampUS();
CopyBlobInfo(input_blob, res);
AddBlobInfo(res, start);
AddBlobInfo(res, end);
VLOG(2) << "(logid=" << log_id << ") read data from client success";
return 0;
}
DEFINE_OP(GeneralCopyOp);
} // namespace serving
} // namespace paddle_serving
} // namespace baidu
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "core/predictor/framework/resource.h"
#include "paddle_inference_api.h" // NOLINT
namespace baidu {
namespace paddle_serving {
namespace serving {
class GeneralCopyOp
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(GeneralCopyOp);
int inference();
};
} // namespace serving
} // namespace paddle_serving
} // namespace baidu
......@@ -36,7 +36,6 @@ using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FetchInst;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
......
文件模式从 100755 更改为 100644
......@@ -34,7 +34,6 @@ using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FetchInst;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
......
......@@ -35,7 +35,6 @@ using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FetchInst;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
......@@ -117,9 +116,6 @@ int GeneralDistKVQuantInferOp::inference() {
std::unordered_map<int, int> in_out_map;
baidu::paddle_serving::predictor::Resource &resource =
baidu::paddle_serving::predictor::Resource::instance();
//TODO:Temporary addition, specific details to be studied by HexToString
std::shared_ptr<PaddleGeneralModelConfig> model_config =
resource.get_general_model_config()[0];
int cube_quant_bits = resource.get_cube_quant_bits();
size_t EMBEDDING_SIZE = 0;
if (cube_quant_bits == 0) {
......@@ -146,7 +142,7 @@ int GeneralDistKVQuantInferOp::inference() {
sparse_out[sparse_idx].shape.push_back(
sparse_out[sparse_idx].lod[0].back());
sparse_out[sparse_idx].shape.push_back(EMBEDDING_SIZE);
sparse_out[sparse_idx].name = model_config->_feed_name[i];
sparse_out[sparse_idx].name = in->at(i).name;
sparse_out[sparse_idx].data.Resize(sparse_out[sparse_idx].lod[0].back() *
EMBEDDING_SIZE * sizeof(float));
// END HERE
......
......@@ -31,7 +31,6 @@ using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FetchInst;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
......@@ -49,7 +48,7 @@ int GeneralInferOp::inference() {
const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
if (!input_blob) {
LOG(ERROR) << "input_blob is nullptr,error";
return -1;
return -1;
}
uint64_t log_id = input_blob->GetLogId();
VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;
......@@ -57,7 +56,7 @@ int GeneralInferOp::inference() {
GeneralBlob *output_blob = mutable_data<GeneralBlob>();
if (!output_blob) {
LOG(ERROR) << "output_blob is nullptr,error";
return -1;
return -1;
}
output_blob->SetLogId(log_id);
......
......@@ -30,42 +30,8 @@ using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
enum ProtoDataType { P_INT64, P_FLOAT32, P_INT32, P_STRING };
int conf_check(const Request *req,
const std::shared_ptr<PaddleGeneralModelConfig> &model_config) {
int var_num = req->insts(0).tensor_array_size();
if (var_num != model_config->_feed_type.size()) {
LOG(ERROR) << "feed var number not match: model config["
<< model_config->_feed_type.size() << "] vs. actual[" << var_num
<< "]";
return -1;
}
VLOG(2) << "fetch var num in reader op: " << req->fetch_var_names_size();
for (int i = 0; i < var_num; ++i) {
const Tensor &tensor = req->insts(0).tensor_array(i);
if (model_config->_feed_type[i] != tensor.elem_type()) {
LOG(ERROR) << "feed type not match.";
return -1;
}
if (model_config->_feed_shape[i].size() == tensor.shape_size()) {
for (int j = 0; j < model_config->_feed_shape[i].size(); ++j) {
tensor.shape(j);
if (model_config->_feed_shape[i][j] != tensor.shape(j)) {
LOG(ERROR) << "feed shape not match.";
return -1;
}
}
} else {
LOG(ERROR) << "feed shape not match.";
return -1;
}
}
return 0;
}
int GeneralReaderOp::inference() {
// read request from client
......@@ -93,10 +59,8 @@ int GeneralReaderOp::inference() {
res->SetLogId(log_id);
Timer timeline;
int64_t start = timeline.TimeStampUS();
// only get insts(0), cause batch is already in Tensor.
// req can only include 1 inst.
// var_num means the number of feed_var.
int var_num = req->insts(0).tensor_array_size();
int var_num = req->tensor_size();
VLOG(2) << "(logid=" << log_id << ") var num: " << var_num
<< ") start to call load general model_conf op";
......@@ -105,19 +69,7 @@ int GeneralReaderOp::inference() {
baidu::paddle_serving::predictor::Resource::instance();
VLOG(2) << "(logid=" << log_id << ") get resource pointer done.";
// get the first InferOP's model_config as ReaderOp's model_config by default.
std::shared_ptr<PaddleGeneralModelConfig> model_config =
resource.get_general_model_config().front();
// TODO(guru4elephant): how to do conditional check?
/*
int ret = conf_check(req, model_config);
if (ret != 0) {
LOG(ERROR) << "model conf of server:";
resource.print_general_model_config(model_config);
return 0;
}
*/
// package tensor
// prepare basic information for input
// specify the memory needed for output tensor_vector
......@@ -128,7 +80,7 @@ int GeneralReaderOp::inference() {
int64_t databuf_size = 0;
for (int i = 0; i < var_num; ++i) {
paddle::PaddleTensor paddleTensor;
const Tensor &tensor = req->insts(0).tensor_array(i);
const Tensor &tensor = req->tensor(i);
data_len = 0;
elem_type = 0;
elem_size = 0;
......@@ -175,7 +127,7 @@ int GeneralReaderOp::inference() {
VLOG(2) << "(logid=" << log_id << ") shape for var[" << i << "]: " << dim;
paddleTensor.shape.push_back(dim);
}
paddleTensor.name = model_config->_feed_name[i];
paddleTensor.name = tensor.name();
out->push_back(paddleTensor);
VLOG(2) << "(logid=" << log_id << ") tensor size for var[" << i
......
......@@ -34,7 +34,6 @@ using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FetchInst;
using baidu::paddle_serving::predictor::general_model::ModelOutput;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
......@@ -49,7 +48,6 @@ int GeneralResponseOp::inference() {
get_depend_argument<GeneralBlob>(pre_node_names[0])->GetLogId();
const Request *req = dynamic_cast<const Request *>(get_request_message());
// response inst with only fetch_var_names
Response *res = mutable_data<Response>();
Timer timeline;
......@@ -63,7 +61,8 @@ int GeneralResponseOp::inference() {
baidu::paddle_serving::predictor::Resource::instance();
VLOG(2) << "(logid=" << log_id << ") get resource pointer done.";
//get the last InferOP's model_config as ResponseOp's model_config by default.
// get the last InferOP's model_config as ResponseOp's model_config by
// default.
std::shared_ptr<PaddleGeneralModelConfig> model_config =
resource.get_general_model_config().back();
......@@ -71,6 +70,10 @@ int GeneralResponseOp::inference() {
<< ") max body size : " << brpc::fLU64::FLAGS_max_body_size;
std::vector<int> fetch_index;
// this is based on GetOutPutNames() is ordered map.
// and the order of Output is the same as the prototxt FetchVar.
// otherwise, you can only get the Output by the corresponding of
// Name -- Alias_name.
fetch_index.resize(req->fetch_var_names_size());
for (int i = 0; i < req->fetch_var_names_size(); ++i) {
fetch_index[i] =
......@@ -95,40 +98,41 @@ int GeneralResponseOp::inference() {
ModelOutput *output = res->add_outputs();
// To get the order of model return values
output->set_engine_name(pre_name);
FetchInst *fetch_inst = output->add_insts();
var_idx = 0;
// idx is the real index of FetchVar.
// idx is not the index of FetchList.
// fetch_index is the real index in FetchVar of Fetchlist
// for example, FetchVar = {0:A, 1:B, 2:C}
// FetchList = {0:C,1:A}, at this situation.
// fetch_index = [2,0], C`index = 2 and A`index = 0
for (auto &idx : fetch_index) {
Tensor *tensor = fetch_inst->add_tensor_array();
//tensor->set_elem_type(1);
if (model_config->_is_lod_fetch[idx]) {
VLOG(2) << "(logid=" << log_id << ") out[" << idx << "] "
<< model_config->_fetch_name[idx] << " is lod_tensor";
for (int k = 0; k < in->at(idx).shape.size(); ++k) {
VLOG(2) << "(logid=" << log_id << ") shape[" << k
<< "]: " << in->at(idx).shape[k];
tensor->add_shape(in->at(idx).shape[k]);
}
} else {
VLOG(2) << "(logid=" << log_id << ") out[" << idx << "] "
<< model_config->_fetch_name[idx] << " is tensor";
for (int k = 0; k < in->at(idx).shape.size(); ++k) {
VLOG(2) << "(logid=" << log_id << ") shape[" << k
<< "]: " << in->at(idx).shape[k];
tensor->add_shape(in->at(idx).shape[k]);
Tensor *tensor = output->add_tensor();
tensor->set_name(in->at(idx).name);
tensor->set_alias_name(model_config->_fetch_alias_name[idx]);
for (int k = 0; k < in->at(idx).shape.size(); ++k) {
VLOG(2) << "(logid=" << log_id << ") shape[" << k
<< "]: " << in->at(idx).shape[k];
tensor->add_shape(in->at(idx).shape[k]);
}
std::string str_tensor_type = "is tensor";
if (model_config->_is_lod_fetch[idx] && in->at(idx).lod.size() > 0) {
str_tensor_type = "is lod_tensor";
for (int j = 0; j < in->at(idx).lod[0].size(); ++j) {
tensor->add_lod(in->at(idx).lod[0][j]);
}
}
}
VLOG(2) << "(logid=" << log_id << ") out[" << idx << "] "
<< model_config->_fetch_name[idx] << str_tensor_type;
var_idx = 0;
for (auto &idx : fetch_index) {
cap = 1;
for (int j = 0; j < in->at(idx).shape.size(); ++j) {
cap *= in->at(idx).shape[j];
}
FetchInst *fetch_p = output->mutable_insts(0);
auto dtype = in->at(idx).dtype;
if (dtype == paddle::PaddleDType::INT64) {
tensor->set_elem_type(0);
VLOG(2) << "(logid=" << log_id << ") Prepare int64 var ["
<< model_config->_fetch_name[idx] << "].";
int64_t *data_ptr = static_cast<int64_t *>(in->at(idx).data.data());
......@@ -137,35 +141,24 @@ int GeneralResponseOp::inference() {
// `Swap` method is faster than `{}` method.
google::protobuf::RepeatedField<int64_t> tmp_data(data_ptr,
data_ptr + cap);
fetch_p->mutable_tensor_array(var_idx)->mutable_int64_data()->Swap(
&tmp_data);
output->mutable_tensor(var_idx)->mutable_int64_data()->Swap(&tmp_data);
} else if (dtype == paddle::PaddleDType::FLOAT32) {
tensor->set_elem_type(1);
VLOG(2) << "(logid=" << log_id << ") Prepare float var ["
<< model_config->_fetch_name[idx] << "].";
float *data_ptr = static_cast<float *>(in->at(idx).data.data());
google::protobuf::RepeatedField<float> tmp_data(data_ptr,
data_ptr + cap);
fetch_p->mutable_tensor_array(var_idx)->mutable_float_data()->Swap(
&tmp_data);
output->mutable_tensor(var_idx)->mutable_float_data()->Swap(&tmp_data);
} else if (dtype == paddle::PaddleDType::INT32) {
tensor->set_elem_type(2);
VLOG(2) << "(logid=" << log_id << ")Prepare int32 var ["
<< model_config->_fetch_name[idx] << "].";
int32_t *data_ptr = static_cast<int32_t *>(in->at(idx).data.data());
google::protobuf::RepeatedField<int32_t> tmp_data(data_ptr,
data_ptr + cap);
fetch_p->mutable_tensor_array(var_idx)->mutable_int_data()->Swap(
&tmp_data);
}
if (model_config->_is_lod_fetch[idx]) {
if (in->at(idx).lod.size() > 0) {
for (int j = 0; j < in->at(idx).lod[0].size(); ++j) {
fetch_p->mutable_tensor_array(var_idx)->add_lod(
in->at(idx).lod[0][j]);
}
}
output->mutable_tensor(var_idx)->mutable_int_data()->Swap(&tmp_data);
}
VLOG(2) << "(logid=" << log_id << ") fetch var ["
......@@ -205,4 +198,4 @@ DEFINE_OP(GeneralResponseOp);
} // namespace serving
} // namespace paddle_serving
} // namespace baidu
\ No newline at end of file
} // namespace baidu
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/general_text_reader_op.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/util/include/timer.h"
namespace baidu {
namespace paddle_serving {
namespace serving {
using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
int GeneralTextReaderOp::inference() {
// reade request from client
const Request *req = dynamic_cast<const Request *>(get_request_message());
uint64_t log_id = req->log_id();
int batch_size = req->insts_size();
int input_var_num = 0;
std::vector<int64_t> elem_type;
std::vector<int64_t> elem_size;
std::vector<int64_t> capacity;
GeneralBlob *res = mutable_data<GeneralBlob>();
if (!res) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed get op tls reader object output";
}
TensorVector *out = &res->tensor_vector;
res->SetBatchSize(batch_size);
res->SetLogId(log_id);
if (batch_size <= 0) {
LOG(ERROR) << "(logid=" << log_id << ") Batch size < 0";
return -1;
}
Timer timeline;
int64_t start = timeline.TimeStampUS();
int var_num = req->insts(0).tensor_array_size();
VLOG(2) << "(logid=" << log_id << ") var num: " << var_num;
VLOG(2) << "(logid=" << log_id
<< ") start to call load general model_conf op";
baidu::paddle_serving::predictor::Resource &resource =
baidu::paddle_serving::predictor::Resource::instance();
VLOG(2) << "(logid=" << log_id << ") get resource pointer done.";
std::shared_ptr<PaddleGeneralModelConfig> model_config =
resource.get_general_model_config()[0];
VLOG(2) << "(logid=" << log_id << ") print general model config done.";
elem_type.resize(var_num);
elem_size.resize(var_num);
capacity.resize(var_num);
for (int i = 0; i < var_num; ++i) {
paddle::PaddleTensor lod_tensor;
elem_type[i] = req->insts(0).tensor_array(i).elem_type();
VLOG(2) << "(logid=" << log_id << ") var[" << i
<< "] has elem type: " << elem_type[i];
if (elem_type[i] == 0) { // int64
elem_size[i] = sizeof(int64_t);
lod_tensor.dtype = paddle::PaddleDType::INT64;
} else {
elem_size[i] = sizeof(float);
lod_tensor.dtype = paddle::PaddleDType::FLOAT32;
}
if (req->insts(0).tensor_array(i).shape(0) == -1) {
lod_tensor.lod.resize(1);
lod_tensor.lod[0].push_back(0);
VLOG(2) << "(logid=" << log_id << ") var[" << i << "] is lod_tensor";
} else {
lod_tensor.shape.push_back(batch_size);
capacity[i] = 1;
for (int k = 0; k < req->insts(0).tensor_array(i).shape_size(); ++k) {
int dim = req->insts(0).tensor_array(i).shape(k);
VLOG(2) << "(logid=" << log_id << ") shape for var[" << i
<< "]: " << dim;
capacity[i] *= dim;
lod_tensor.shape.push_back(dim);
}
VLOG(2) << "(logid=" << log_id << ") var[" << i
<< "] is tensor, capacity: " << capacity[i];
}
lod_tensor.name = model_config->_feed_name[i];
out->push_back(lod_tensor);
}
for (int i = 0; i < var_num; ++i) {
if (out->at(i).lod.size() == 1) {
for (int j = 0; j < batch_size; ++j) {
const Tensor &tensor = req->insts(j).tensor_array(i);
int data_len = tensor.int_data_size();
int cur_len = out->at(i).lod[0].back();
out->at(i).lod[0].push_back(cur_len + data_len);
}
out->at(i).data.Resize(out->at(i).lod[0].back() * elem_size[i]);
out->at(i).shape = {out->at(i).lod[0].back(), 1};
VLOG(2) << "(logid=" << log_id << ") var[" << i
<< "] is lod_tensor and len=" << out->at(i).lod[0].back();
} else {
out->at(i).data.Resize(batch_size * capacity[i] * elem_size[i]);
VLOG(2) << "(logid=" << log_id << ") var[" << i
<< "] is tensor and capacity=" << batch_size * capacity[i];
}
}
for (int i = 0; i < var_num; ++i) {
if (elem_type[i] == 0) {
int64_t *dst_ptr = static_cast<int64_t *>(out->at(i).data.data());
int offset = 0;
for (int j = 0; j < batch_size; ++j) {
for (int k = 0; k < req->insts(j).tensor_array(i).int_data_size();
++k) {
dst_ptr[offset + k] = req->insts(j).tensor_array(i).int_data(k);
}
if (out->at(i).lod.size() == 1) {
offset = out->at(i).lod[0][j + 1];
} else {
offset += capacity[i];
}
}
} else {
float *dst_ptr = static_cast<float *>(out->at(i).data.data());
int offset = 0;
for (int j = 0; j < batch_size; ++j) {
for (int k = 0; k < req->insts(j).tensor_array(i).int_data_size();
++k) {
dst_ptr[offset + k] = req->insts(j).tensor_array(i).int_data(k);
}
if (out->at(i).lod.size() == 1) {
offset = out->at(i).lod[0][j + 1];
} else {
offset += capacity[i];
}
}
}
}
int64_t end = timeline.TimeStampUS();
res->p_size = 0;
AddBlobInfo(res, start);
AddBlobInfo(res, end);
VLOG(2) << "(logid=" << log_id << ") read data from client success";
return 0;
}
DEFINE_OP(GeneralTextReaderOp);
} // namespace serving
} // namespace paddle_serving
} // namespace baidu
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/load_general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "core/predictor/framework/resource.h"
#include "paddle_inference_api.h" // NOLINT
namespace baidu {
namespace paddle_serving {
namespace serving {
class GeneralTextReaderOp
: public baidu::paddle_serving::predictor::OpWithChannel<GeneralBlob> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(GeneralTextReaderOp);
int inference();
};
} // namespace serving
} // namespace paddle_serving
} // namespace baidu
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "core/general-server/op/general_text_response_op.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
namespace baidu {
namespace paddle_serving {
namespace serving {
using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FetchInst;
using baidu::paddle_serving::predictor::general_model::ModelOutput;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
int GeneralTextResponseOp::inference() {
VLOG(2) << "Going to run inference";
const std::vector<std::string> pre_node_names = pre_names();
VLOG(2) << "pre node names size: " << pre_node_names.size();
const GeneralBlob *input_blob;
uint64_t log_id =
get_depend_argument<GeneralBlob>(pre_node_names[0])->GetLogId();
const Request *req = dynamic_cast<const Request *>(get_request_message());
// response inst with only fetch_var_names
Response *res = mutable_data<Response>();
Timer timeline;
int64_t start = timeline.TimeStampUS();
VLOG(2) << "(logid=" << log_id
<< ") start to call load general model_conf op";
baidu::paddle_serving::predictor::Resource &resource =
baidu::paddle_serving::predictor::Resource::instance();
VLOG(2) << "(logid=" << log_id << ") get resource pointer done.";
std::shared_ptr<PaddleGeneralModelConfig> model_config =
resource.get_general_model_config().back();
std::vector<int> fetch_index;
fetch_index.resize(req->fetch_var_names_size());
for (int i = 0; i < req->fetch_var_names_size(); ++i) {
fetch_index[i] =
model_config->_fetch_alias_name_to_index[req->fetch_var_names(i)];
}
for (uint32_t pi = 0; pi < pre_node_names.size(); ++pi) {
const std::string &pre_name = pre_node_names[pi];
VLOG(2) << "(logid=" << log_id << ") pre names[" << pi << "]: " << pre_name
<< " (" << pre_node_names.size() << ")";
input_blob = get_depend_argument<GeneralBlob>(pre_name);
if (!input_blob) {
LOG(ERROR) << "(logid=" << log_id
<< ") Failed mutable depended argument, op: " << pre_name;
return -1;
}
const TensorVector *in = &input_blob->tensor_vector;
int batch_size = input_blob->GetBatchSize();
VLOG(2) << "(logid=" << log_id << ") input batch size: " << batch_size;
ModelOutput *output = res->add_outputs();
output->set_engine_name(
pre_name); // To get the order of model return values
for (int i = 0; i < batch_size; ++i) {
FetchInst *fetch_inst = output->add_insts();
for (auto &idx : fetch_index) {
Tensor *tensor = fetch_inst->add_tensor_array();
// currently only response float tensor or lod_tensor
tensor->set_elem_type(1);
if (model_config->_is_lod_fetch[idx]) {
VLOG(2) << "(logid=" << log_id << ") out[" << idx << " is lod_tensor";
tensor->add_shape(-1);
} else {
VLOG(2) << "(logid=" << log_id << ") out[" << idx << "] is tensor";
for (int k = 1; k < in->at(idx).shape.size(); ++k) {
VLOG(2) << "(logid=" << log_id << ") shape[" << k - 1
<< "]: " << in->at(idx).shape[k];
tensor->add_shape(in->at(idx).shape[k]);
}
}
}
}
int var_idx = 0;
for (auto &idx : fetch_index) {
float *data_ptr = static_cast<float *>(in->at(idx).data.data());
int cap = 1;
for (int j = 1; j < in->at(idx).shape.size(); ++j) {
cap *= in->at(idx).shape[j];
}
if (model_config->_is_lod_fetch[idx]) {
for (int j = 0; j < batch_size; ++j) {
for (int k = in->at(idx).lod[0][j]; k < in->at(idx).lod[0][j + 1];
k++) {
output->mutable_insts(j)
->mutable_tensor_array(var_idx)
->add_float_data(data_ptr[k]);
}
}
} else {
for (int j = 0; j < batch_size; ++j) {
for (int k = j * cap; k < (j + 1) * cap; ++k) {
output->mutable_insts(j)
->mutable_tensor_array(var_idx)
->add_float_data(data_ptr[k]);
}
}
}
var_idx++;
}
}
if (req->profile_server()) {
int64_t end = timeline.TimeStampUS();
// TODO(barriery): multi-model profile_time.
// At present, only the response_op is multi-input, so here we get
// the profile_time by hard coding. It needs to be replaced with
// a more elegant way.
for (uint32_t pi = 0; pi < pre_node_names.size(); ++pi) {
input_blob = get_depend_argument<GeneralBlob>(pre_node_names[pi]);
VLOG(2) << "(logid=" << log_id
<< ") p size for input blob: " << input_blob->p_size;
int profile_time_idx = -1;
if (pi == 0) {
profile_time_idx = 0;
} else {
profile_time_idx = input_blob->p_size - 2;
}
for (; profile_time_idx < input_blob->p_size; ++profile_time_idx) {
res->add_profile_time(input_blob->time_stamp[profile_time_idx]);
}
}
// TODO(guru4elephant): find more elegant way to do this
res->add_profile_time(start);
res->add_profile_time(end);
}
return 0;
}
DEFINE_OP(GeneralTextResponseOp);
} // namespace serving
} // namespace paddle_serving
} // namespace baidu
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "core/general-server/general_model_service.pb.h"
#include "core/general-server/op/general_infer_helper.h"
#include "paddle_inference_api.h" // NOLINT
namespace baidu {
namespace paddle_serving {
namespace serving {
class GeneralTextResponseOp
: public baidu::paddle_serving::predictor::OpWithChannel<
baidu::paddle_serving::predictor::general_model::Response> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(GeneralTextResponseOp);
int inference();
};
} // namespace serving
} // namespace paddle_serving
} // namespace baidu
......@@ -24,17 +24,16 @@ message Tensor {
repeated int32 int_data = 2;
repeated int64 int64_data = 3;
repeated float float_data = 4;
optional int32 elem_type = 5;
repeated int32 shape = 6;
repeated int32 lod = 7; // only for fetch tensor currently
optional int32 elem_type =
5; // 0 means int64, 1 means float32, 2 means int32, 3 means bytes(string)
repeated int32 shape = 6; // shape should include batch
repeated int32 lod = 7; // only for fetch tensor currently
optional string name = 8; // get from the Model prototxt
optional string alias_name = 9; // get from the Model prototxt
};
message FeedInst { repeated Tensor tensor_array = 1; };
message FetchInst { repeated Tensor tensor_array = 1; };
message Request {
repeated FeedInst insts = 1;
repeated Tensor tensor = 1;
repeated string fetch_var_names = 2;
optional bool profile_server = 3 [ default = false ];
required uint64 log_id = 4 [ default = 0 ];
......@@ -46,7 +45,7 @@ message Response {
};
message ModelOutput {
repeated FetchInst insts = 1;
repeated Tensor tensor = 1;
optional string engine_name = 2;
}
......
......@@ -280,6 +280,7 @@ class PdsCodeGenerator : public CodeGenerator {
" baidu::rpc::ClosureGuard done_guard(done);\n"
" baidu::rpc::Controller* cntl = \n"
" static_cast<baidu::rpc::Controller*>(cntl_base);\n"
" cntl->set_response_compress_type(brpc::COMPRESS_TYPE_GZIP);\n"
" uint64_t log_id = request->log_id();\n"
" cntl->set_log_id(log_id);\n"
" ::baidu::paddle_serving::predictor::InferService* svr = \n"
......@@ -322,6 +323,7 @@ class PdsCodeGenerator : public CodeGenerator {
" baidu::rpc::ClosureGuard done_guard(done);\n"
" baidu::rpc::Controller* cntl = \n"
" static_cast<baidu::rpc::Controller*>(cntl_base);\n"
" cntl->set_response_compress_type(brpc::COMPRESS_TYPE_GZIP);\n"
" uint64_t log_id = equest->log_id();\n"
" cntl->set_log_id(log_id);\n"
" ::baidu::paddle_serving::predictor::InferService* svr = \n"
......@@ -1023,6 +1025,7 @@ class PdsCodeGenerator : public CodeGenerator {
" brpc::ClosureGuard done_guard(done);\n"
" brpc::Controller* cntl = \n"
" static_cast<brpc::Controller*>(cntl_base);\n"
" cntl->set_response_compress_type(brpc::COMPRESS_TYPE_GZIP);\n"
" uint64_t log_id = request->log_id();\n"
" cntl->set_log_id(log_id);\n"
" ::baidu::paddle_serving::predictor::InferService* svr = \n"
......@@ -1067,6 +1070,7 @@ class PdsCodeGenerator : public CodeGenerator {
" brpc::ClosureGuard done_guard(done);\n"
" brpc::Controller* cntl = \n"
" static_cast<brpc::Controller*>(cntl_base);\n"
" cntl->set_response_compress_type(brpc::COMPRESS_TYPE_GZIP);\n"
" uint64_t log_id = request->log_id();\n"
" cntl->set_log_id(log_id);\n"
" ::baidu::paddle_serving::predictor::InferService* svr = \n"
......
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
......@@ -24,17 +24,16 @@ message Tensor {
repeated int32 int_data = 2;
repeated int64 int64_data = 3;
repeated float float_data = 4;
optional int32 elem_type = 5;
repeated int32 shape = 6;
repeated int32 lod = 7; // only for fetch tensor currently
optional int32 elem_type =
5; // 0 means int64, 1 means float32, 2 means int32, 3 means bytes(string)
repeated int32 shape = 6; // shape should include batch
repeated int32 lod = 7; // only for fetch tensor currently
optional string name = 8; // get from the Model prototxt
optional string alias_name = 9; // get from the Model prototxt
};
message FeedInst { repeated Tensor tensor_array = 1; };
message FetchInst { repeated Tensor tensor_array = 1; };
message Request {
repeated FeedInst insts = 1;
repeated Tensor tensor = 1;
repeated string fetch_var_names = 2;
optional bool profile_server = 3 [ default = false ];
required uint64 log_id = 4 [ default = 0 ];
......@@ -46,7 +45,7 @@ message Response {
};
message ModelOutput {
repeated FetchInst insts = 1;
repeated Tensor tensor = 1;
optional string engine_name = 2;
}
......
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
......@@ -324,6 +324,15 @@ GLOG_v=2 python -m paddle_serving_server.serve --model xxx_conf/ --port 9999
**A:** Logid默认为0(后续应该有自动生成Logid的计划,当前版本0.4.0),Client端通过在predict函数中指定log_id参数传递
#### Q: C++Server出现问题如何调试和定位
**A:** 推荐您使用gdb进行定位和调试,如果您使用docker,在启动容器时候,需要加上docker run --privileged参数,开启特权模式,这样才能在docker容器中使用gdb定位和调试
如果您C++端出现coredump,一般而言会生成一个core文件,若没有,则应开启生成core文件选项,使用ulimit -c unlimited命令。
使用gdb调试core文件的方法为:gdb <可执行文件> <core文件>,进入后输入bt指令,一般即可显示出错在哪一行。
注意:可执行文件路径是C++ bin文件的路径,而不是python命令,一般为类似下面的这种/usr/local/lib/python3.6/site-packages/paddle_serving_server/serving-gpu-102-0.6.2/serving
## 性能优化
# HTTP方式访问Server
Paddle Serving服务端目前提供了支持Http直接访问的功能,本文档显示了详细信息。
## 基本原理
BRPC-Server端支持通过Http的方式被访问,各种语言都有实现Http请求的一些库,所以Java/Python/Go等BRPC支持不太完善的语言,可以通过Http的方式直接访问服务端进行预测。
### Http方式
基本流程和原理:客户端需要将数据按照Proto约定的格式(请参阅[`core/general-server/proto/general_model_service.proto`](../core/general-server/proto/general_model_service.proto))封装在Http请求的请求体中。
BRPC-Server会尝试去JSON字符串中再去反序列化出Proto格式的数据,从而进行后续的处理。
### Http+protobuf方式
各种语言都提供了对ProtoBuf的支持,如果您对此比较熟悉,您也可以先将数据使用ProtoBuf序列化,再将序列化后的数据放入Http请求数据体中,然后指定Content-Type: application/proto,从而使用http/h2+protobuf二进制串访问服务。
**理论上讲,序列化/反序列化的性能从高到底排序为:protobuf > http/h2+protobuf > http**
## 示例
我们将以python/examples/fit_a_line为例,讲解如何通过Http访问Server端。
### 获取模型
```shell
sh get_data.sh
```
## 开启服务端
```shell
python3.6 -m paddle_serving_server.serve --model uci_housing_model --thread 10 --port 9393
```
服务端无须做任何改造,即可支持BRPC和HTTP两种方式。
## 客户端访问
### HttpClient方式发送Http请求(Python/Java)
为了方便用户快速的使用Http方式请求Server端预测服务,我们已经将常用的Http请求的数据体封装、压缩、请求加密等功能封装为一个HttpClient类提供给用户,方便用户使用。
使用HttpClient最简单只需要三步,1、创建一个HttpClient对象。2、加载Client端的prototxt配置文件(本例中为python/examples/fit_a_line/目录下的uci_housing_client/serving_client_conf.prototxt),3、调用Predict函数,通过Http方式请求预测服务。
此外,您可以根据自己的需要配置Server端IP、Port、服务名称(此服务名称需要与[`core/general-server/proto/general_model_service.proto`](../core/general-server/proto/general_model_service.proto)文件中的Service服务名和rpc方法名对应,即`GeneralModelService`字段和`inference`字段),设置Request数据体压缩,设置Response支持压缩传输,模型加密预测(需要配置Server端使用模型加密)、设置响应超时时间等功能。
Python的HttpClient使用示例见[`python/examples/fit_a_line/test_httpclient.py`](../python/examples/fit_a_line/test_httpclient.py),接口详见[`python/paddle_serving_client/httpclient.py`](../python/paddle_serving_client/httpclient.py)
Java的HttpClient使用示例见[`java/examples/src/main/java/PaddleServingClientExample.java`](../java/examples/src/main/java/PaddleServingClientExample.java)接口详见[`java/src/main/java/io/paddle/serving/client/HttpClient.java`](../java/src/main/java/io/paddle/serving/client/HttpClient.java)
如果不能满足您的需求,您也可以在此基础上添加一些功能。
如需支持https或者自定义Response的Status Code等,则需要对C++端brpc-Server进行一定的二次开发,请参考https://github.com/apache/incubator-brpc/blob/master/docs/cn/http_service.md,后续如果需求很大,我们也会将这部分功能加入到Server中,尽情期待。
### curl方式发送Http请求(基本原理)
```shell
curl -XPOST http://0.0.0.0:9393/GeneralModelService/inference -d ' {"tensor":[{"float_data":[0.0137,-0.1136,0.2553,-0.0692,0.0582,-0.0727,-0.1583,-0.0584,0.6283,0.4919,0.1856,0.0795,-0.0332],"elem_type":1,"name":"x","alias_name":"x","shape":[1,13]}],"fetch_var_names":["price"],"log_id":0}'
```
其中`127.0.0.1:9393`为IP和Port,根据您服务端启动的IP和Port自行设定。
`GeneralModelService`字段和`inference`字段分别为Proto文件中的Service服务名和rpc方法名,详见[`core/general-server/proto/general_model_service.proto`](../core/general-server/proto/general_model_service.proto)
-d后面的是请求的数据体,json中一定要包含上述proto中的required字段,否则转化会失败,对应请求会被拒绝。
需要注意的是,数据中的shape字段为模型实际需要的shape信息,包含batch维度在内,可能与proto文件中的shape不一致。
#### message
对应rapidjson Object, 以花括号包围,其中的元素会被递归地解析。
```protobuf
// protobuf
message Foo {
required string field1 = 1;
required int32 field2 = 2;
}
message Bar {
required Foo foo = 1;
optional bool flag = 2;
required string name = 3;
}
// rapidjson
{"foo":{"field1":"hello", "field2":3},"name":"Tom" }
```
#### repeated field
对应rapidjson Array, 以方括号包围,其中的元素会被递归地解析,和message不同,每个元素的类型相同。
```protobuf
// protobuf
repeated int32 numbers = 1;
// rapidjson
{"numbers" : [12, 17, 1, 24] }
```
#### elem_type
表示数据类型,0 means int64, 1 means float32, 2 means int32, 3 means bytes(string)
#### fetch_var_names
表示返回结果中需要的数据名称,请参考模型文件serving_client_conf.prototxt中的`fetch_var`字段下的`alias_name`
### Http压缩
支持gzip压缩,但gzip并不是一个压缩解压速度非常快的方法,当数据量较小时候,使用gzip压缩反而会得不偿失,推荐至少数据大于512字节时才考虑使用gzip压缩。
#### Client请求的数据体压缩
以上面的fit_a_line为例,仍使用上文的请求数据体,但只作为示例演示用法,实际此时使用压缩得不偿失。
```shell
echo ' {"tensor":[{"float_data":[0.0137,-0.1136,0.2553,-0.0692,0.0582,-0.0727,-0.1583,-0.0584,0.6283,0.4919,0.1856,0.0795,-0.0332],"elem_type":1,"shape":[1,13]}],"fetch_var_names":["price"],"log_id":0}' | gzip -c > data.txt.gz
```
```shell
curl --data-binary @data.txt.gz -H'Content-Encoding: gzip' -XPOST http://127.0.0.1:9393/GeneralModelService/inference
```
**注意:当请求数据体压缩时,需要指定请求头中Content-Encoding: gzip**
#### Server端Response压缩
当Http请求头中设置了Accept-encoding: gzip时,Server端会尝试用gzip压缩Response的数据,“尝试“指的是压缩有可能不发生,条件有:
- 请求中没有设置Accept-encoding: gzip。
- body尺寸小于-http_body_compress_threshold指定的字节数,默认是512。gzip并不是一个很快的压缩算法,当body较小时,压缩增加的延时可能比网络传输省下的还多。当包较小时不做压缩可能是个更好的选项。
这时server总是会返回不压缩的结果。
如果使用curl,通常推荐使用--compressed参数来设置Response压缩,--compressed参数会自动地在http请求中设置Accept-encoding: gzip,并在收到压缩后的Response后自动解压,对于用户而言,整个压缩/解压过程就像透明的一样。
```shell
curl --data-binary @data.txt.gz -H'Content-Encoding: gzip' --compressed -XPOST http://127.0.0.1:9393/GeneralModelService/inference
```
若您只是在Http请求头中通过-H'Accept-encoding: gzip'设置了接收压缩的信息,收到的将是压缩后的Response,此时,您需要手动解压。
也就是说,--compressed = -H'Content-Encoding: gzip' + 自动解压,所以推荐您使用--compressed,以下仅作为单独设置请求头+手动解压的原理性示例。
当您想要验证返回值是否真的压缩时,您可以只添加请求头-H'Content-Encoding: gzip',而不解压,可以看到返回信息是压缩后的数据(一般而言是看不懂的压缩码)。
```shell
curl --data-binary @data.txt.gz -H'Content-Encoding: gzip' -H'Accept-encoding: gzip' -XPOST http://127.0.0.1:9393/GeneralModelService/inference | gunzip
```
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
此差异已折叠。
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
文件模式从 100755 更改为 100644
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
文件模式从 100755 更改为 100644
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册