Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
27e45738
S
Serving
项目概览
PaddlePaddle
/
Serving
1 年多 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
27e45738
编写于
7月 13, 2020
作者:
B
barrierye
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
succ run
上级
7d06d541
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
128 addition
and
56 deletion
+128
-56
core/configure/proto/multi_lang_general_model_service.proto
core/configure/proto/multi_lang_general_model_service.proto
+4
-0
java/paddle-serving-sdk-java/src/main/java/io/paddle/serving/client/Client.java
...k-java/src/main/java/io/paddle/serving/client/Client.java
+124
-54
java/paddle-serving-sdk-java/src/main/proto/multi_lang_general_model_service.proto
...ava/src/main/proto/multi_lang_general_model_service.proto
+0
-2
未找到文件。
core/configure/proto/multi_lang_general_model_service.proto
浏览文件 @
27e45738
...
...
@@ -14,6 +14,10 @@
syntax
=
"proto2"
;
option
java_multiple_files
=
true
;
option
java_package
=
"io.paddle.serving.grpc"
;
option
java_outer_classname
=
"ServingProto"
;
message
Tensor
{
optional
bytes
data
=
1
;
repeated
int32
int_data
=
2
;
...
...
java/paddle-serving-sdk-java/src/main/java/io/paddle/serving/client/Client.java
浏览文件 @
27e45738
...
...
@@ -18,7 +18,6 @@ import org.nd4j.linalg.factory.Nd4j;
import
io.paddle.serving.grpc.*
;
import
io.paddle.serving.configure.*
;
public
class
Client
{
private
ManagedChannel
channel_
;
private
MultiLangGeneralModelServiceGrpc
.
MultiLangGeneralModelServiceBlockingStub
blockingStub_
;
...
...
@@ -66,12 +65,13 @@ public class Client {
}
public
Boolean
connect
(
List
<
String
>
endpoints
)
{
// String target = "ipv4:" + String.join(",", endpoints);
// TODO
//String target = "ipv4:" + String.join(",", endpoints);
String
target
=
endpoints
.
get
(
0
);
// TODO: max_receive_message_length and max_send_message_length
try
{
channel_
=
ManagedChannelBuilder
.
forTarget
(
target
)
.
defaultLoadBalancingPolicy
(
"round_robin"
)
.
maxInboundMessageSize
(
Integer
.
MAX_VALUE
)
.
usePlaintext
()
.
build
();
blockingStub_
=
MultiLangGeneralModelServiceGrpc
.
newBlockingStub
(
channel_
);
...
...
@@ -82,17 +82,13 @@ public class Client {
}
GetClientConfigRequest
get_client_config_req
=
GetClientConfigRequest
.
newBuilder
().
build
();
GetClientConfigResponse
resp
;
System
.
out
.
println
(
"try to call getClientConfig"
);
try
{
resp
=
blockingStub_
.
getClientConfig
(
get_client_config_req
);
}
catch
(
StatusRuntimeException
e
)
{
System
.
out
.
format
(
"Get Client config failed: %s"
,
e
.
toString
());
return
false
;
}
System
.
out
.
println
(
"succ call get client"
);
System
.
out
.
println
(
resp
);
String
model_config_str
=
resp
.
getClientConfigStr
();
System
.
out
.
println
(
"model_config_str: "
+
model_config_str
);
_parseModelConfig
(
model_config_str
);
return
true
;
}
...
...
@@ -112,6 +108,7 @@ public class Client {
feedShapes_
=
new
HashMap
<
String
,
List
<
Integer
>>();
fetchTypes_
=
new
HashMap
<
String
,
Integer
>();
lodTensorSet_
=
new
HashSet
<
String
>();
feedTensorLen_
=
new
HashMap
<
String
,
Integer
>();
List
<
FeedVar
>
feed_var_list
=
model_conf
.
getFeedVarList
();
for
(
FeedVar
feed_var
:
feed_var_list
)
{
...
...
@@ -166,9 +163,6 @@ public class Client {
INDArray
variable
=
feed_data
.
get
(
name
);
long
[]
flattened_shape
=
{-
1
};
INDArray
flattened_list
=
variable
.
reshape
(
flattened_shape
);
for
(
Map
.
Entry
<
String
,
Integer
>
entry
:
feedTypes_
.
entrySet
())
{
System
.
out
.
println
(
"Key = "
+
entry
.
getKey
()
+
", Value = "
+
entry
.
getValue
());
}
int
v_type
=
feedTypes_
.
get
(
name
);
NdIndexIterator
iter
=
new
NdIndexIterator
(
flattened_list
.
shape
());
if
(
v_type
==
0
)
{
// int64
...
...
@@ -184,15 +178,17 @@ public class Client {
tensor_builder
.
addFloatData
(
x
);
}
}
else
if
(
v_type
==
2
)
{
// int32
throw
new
IllegalArgumentException
(
"error tensor value type."
);
//TODO
/*
while
(
iter
.
hasNext
())
{
long
[]
next_index
=
iter
.
next
();
int x = flattened_list.getInt(next_index);
// TODO: long to int?
// the interface of INDArray is strange:
// https://deeplearning4j.org/api/latest/org/nd4j/linalg/api/ndarray/INDArray.html
int
[]
int_next_index
=
new
int
[
next_index
.
length
];
for
(
int
i
=
0
;
i
<
next_index
.
length
;
i
++)
{
int_next_index
[
i
]
=
(
int
)
next_index
[
i
];
}
int
x
=
flattened_list
.
getInt
(
int_next_index
);
tensor_builder
.
addIntData
(
x
);
}
*/
}
}
else
{
throw
new
IllegalArgumentException
(
"error tensor value type."
);
}
...
...
@@ -204,7 +200,7 @@ public class Client {
return
req_builder
.
build
();
}
private
Hash
Map
<
String
,
HashMap
<
String
,
INDArray
>>
private
Map
<
String
,
HashMap
<
String
,
INDArray
>>
_unpackInferenceResponse
(
InferenceResponse
resp
,
Iterable
<
String
>
fetch
,
...
...
@@ -213,7 +209,7 @@ public class Client {
resp
,
fetch
,
fetchTypes_
,
lodTensorSet_
,
need_variant_tag
);
}
private
static
Hash
Map
<
String
,
HashMap
<
String
,
INDArray
>>
private
static
Map
<
String
,
HashMap
<
String
,
INDArray
>>
_staticUnpackInferenceResponse
(
InferenceResponse
resp
,
Iterable
<
String
>
fetch
,
...
...
@@ -227,6 +223,7 @@ public class Client {
HashMap
<
String
,
HashMap
<
String
,
INDArray
>>
multi_result_map
=
new
HashMap
<
String
,
HashMap
<
String
,
INDArray
>>();
for
(
ModelOutput
model_result:
resp
.
getOutputsList
())
{
String
engine_name
=
model_result
.
getEngineName
();
FetchInst
inst
=
model_result
.
getInsts
(
0
);
HashMap
<
String
,
INDArray
>
result_map
=
new
HashMap
<
String
,
INDArray
>();
...
...
@@ -270,25 +267,32 @@ public class Client {
}
index
+=
1
;
}
multi_result_map
.
put
(
engine_name
,
result_map
);
}
// TODO: tag
return
multi_result_map
;
}
public
Map
<
String
,
HashMap
<
String
,
INDArray
>
>
predict
(
public
Map
<
String
,
INDArray
>
predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
)
{
return
predict
(
feed
,
fetch
,
false
);
}
/*
public
Map
<
String
,
HashMap
<
String
,
INDArray
>>
ensemble_predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
)
{
return
ensemble_predict
(
feed
,
fetch
,
false
);
}
public
PredictFuture
async_predict
(
Map<String, INDArray> feed,
Hash
Map
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
)
{
return
async_predict
(
feed
,
fetch
,
false
);
}
*/
public
Map
<
String
,
HashMap
<
String
,
INDArray
>
>
predict
(
public
Map
<
String
,
INDArray
>
predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
)
{
...
...
@@ -297,30 +301,69 @@ public class Client {
feed_batch
.
add
(
feed
);
return
predict
(
feed_batch
,
fetch
,
need_variant_tag
);
}
/*
public
Map
<
String
,
HashMap
<
String
,
INDArray
>>
ensemble_predict
(
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
)
{
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
=
new
ArrayList
<
HashMap
<
String
,
INDArray
>>();
feed_batch
.
add
(
feed
);
return
ensemble_predict
(
feed_batch
,
fetch
,
need_variant_tag
);
}
public
PredictFuture
async_predict
(
Map<String, List<? extends Number>
> feed,
HashMap
<
String
,
INDArray
>
feed
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
)
{
List<
? extends Map<String, List<? extends Number>
>> feed_batch
= new ArrayList<
? extends Map<String, List<? extends Number>
>>();
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
=
new
ArrayList
<
HashMap
<
String
,
INDArray
>>();
feed_batch
.
add
(
feed
);
return
async_predict
(
feed_batch
,
fetch
,
need_variant_tag
);
}
*/
public
Map
<
String
,
HashMap
<
String
,
INDArray
>
>
predict
(
public
Map
<
String
,
INDArray
>
predict
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
)
{
return
predict
(
feed_batch
,
fetch
,
false
);
}
/*
public
Map
<
String
,
HashMap
<
String
,
INDArray
>>
ensemble_predict
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
)
{
return
ensemble_predict
(
feed_batch
,
fetch
,
false
);
}
public
PredictFuture
async_predict
(
List<
? extends Map<String, List<? extends Number>
>> feed_batch,
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
)
{
return
async_predict
(
feed_batch
,
fetch
,
false
);
}
*/
public
Map
<
String
,
HashMap
<
String
,
INDArray
>>
predict
(
public
Map
<
String
,
INDArray
>
predict
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
)
{
InferenceRequest
req
=
_packInferenceRequest
(
feed_batch
,
fetch
);
try
{
InferenceResponse
resp
=
blockingStub_
.
inference
(
req
);
Map
<
String
,
HashMap
<
String
,
INDArray
>>
ensemble_result
=
_unpackInferenceResponse
(
resp
,
fetch
,
need_variant_tag
);
List
<
Map
.
Entry
<
String
,
HashMap
<
String
,
INDArray
>>>
list
=
new
ArrayList
<
Map
.
Entry
<
String
,
HashMap
<
String
,
INDArray
>>>(
ensemble_result
.
entrySet
());
if
(
list
.
size
()
!=
1
)
{
System
.
out
.
format
(
"grpc failed: please use ensemble_predict impl."
);
return
null
;
}
return
list
.
get
(
0
).
getValue
();
}
catch
(
StatusRuntimeException
e
)
{
System
.
out
.
format
(
"grpc failed: %s"
,
e
.
toString
());
return
null
;
}
}
public
Map
<
String
,
HashMap
<
String
,
INDArray
>>
ensemble_predict
(
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
)
{
...
...
@@ -331,31 +374,30 @@ public class Client {
resp
,
fetch
,
need_variant_tag
);
}
catch
(
StatusRuntimeException
e
)
{
System
.
out
.
format
(
"grpc failed: %s"
,
e
.
toString
());
return
Collections
.
emptyMap
()
;
return
null
;
}
}
/*
public
PredictFuture
async_predict
(
List<
Map<String, List<? extends Number>
>> feed_batch,
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
,
Iterable
<
String
>
fetch
,
Boolean
need_variant_tag
)
{
InferenceRequest
req
=
_packInferenceRequest
(
feed_batch
,
fetch
);
ListenableFuture
<
InferenceResponse
>
future
=
futureStub_
.
inference
(
req
);
return new PredictFuture(
future,
(InferenceResponse resp) -> {
return Client._staticUnpackInferenceResponse(
resp, fetch, fetchTypes_, lodTensorSet_, need_variant_tag);
});
PredictFuture
predict_future
=
new
PredictFuture
(
future
,
(
InferenceResponse
resp
)
->
{
return
Client
.
_staticUnpackInferenceResponse
(
resp
,
fetch
,
fetchTypes_
,
lodTensorSet_
,
need_variant_tag
);
}
);
return
predict_future
;
}
*/
public
static
void
main
(
String
[]
args
)
{
float
[]
data
=
{
0.0137f
,
-
0.1136f
,
0.2553f
,
-
0.0692f
,
0.0582f
,
-
0.0727f
,
-
0.1583f
,
-
0.0584f
,
0.6283f
,
0.4919f
,
0.1856f
,
0.0795f
,
-
0.0332f
};
INDArray
npdata
=
Nd4j
.
create
(
data
);
System
.
out
.
println
(
npdata
);
Client
client
=
new
Client
();
List
<
String
>
endpoints
=
Arrays
.
asList
(
"localhost:9393"
);
...
...
@@ -368,30 +410,58 @@ public class Client {
=
new
HashMap
<
String
,
INDArray
>()
{{
put
(
"x"
,
npdata
);
}};
List
<
HashMap
<
String
,
INDArray
>>
feed_batch
=
new
ArrayList
<
HashMap
<
String
,
INDArray
>>()
{{
add
(
feed_data
);
}};
List
<
String
>
fetch
=
Arrays
.
asList
(
"price"
);
Map
<
String
,
INDArray
>
fetch_map
=
client
.
predict
(
feed_data
,
fetch
);
for
(
Map
.
Entry
<
String
,
INDArray
>
e
:
fetch_map
.
entrySet
())
{
System
.
out
.
println
(
"Key = "
+
e
.
getKey
()
+
", Value = "
+
e
.
getValue
());
}
/*
Map<String, HashMap<String, INDArray>> fetch_map
=
client
.
predict
(
feed_batch
,
fetch
);
System
.
out
.
println
(
"Hello World!"
);
= client.predict(feed_data, fetch);
for (Map.Entry<String, HashMap<String, INDArray>> entry : fetch_map.entrySet()) {
System.out.println("Model = " + entry.getKey());
HashMap<String, INDArray> tt = entry.getValue();
for (Map.Entry<String, INDArray> e : tt.entrySet()) {
System.out.println("Key = " + e.getKey() + ", Value = " + e.getValue());
}
}
*/
}
}
class
PredictFuture
{
private
ListenableFuture
<
InferenceResponse
>
callFuture_
;
private
Function
<
InferenceResponse
,
Map
<
String
,
?
extends
Map
<
String
,
List
<?
extends
Number
>
>>>
callBackFunc_
;
Map
<
String
,
HashMap
<
String
,
INDArray
>>>
callBackFunc_
;
PredictFuture
(
ListenableFuture
<
InferenceResponse
>
call_future
,
Function
<
InferenceResponse
,
Map
<
String
,
?
extends
Map
<
String
,
List
<?
extends
Number
>
>>>
call_back_func
)
{
Map
<
String
,
HashMap
<
String
,
INDArray
>>>
call_back_func
)
{
callFuture_
=
call_future
;
callBackFunc_
=
call_back_func
;
}
public
Map
<
String
,
?
extends
Map
<
String
,
List
<?
extends
Number
>>>
get
()
throws
Exception
{
public
Map
<
String
,
INDArray
>
get
()
throws
Exception
{
InferenceResponse
resp
=
null
;
try
{
resp
=
callFuture_
.
get
();
}
catch
(
Exception
e
)
{
System
.
out
.
format
(
"grpc failed: %s"
,
e
.
toString
());
return
null
;
}
Map
<
String
,
HashMap
<
String
,
INDArray
>>
ensemble_result
=
callBackFunc_
.
apply
(
resp
);
List
<
Map
.
Entry
<
String
,
HashMap
<
String
,
INDArray
>>>
list
=
new
ArrayList
<
Map
.
Entry
<
String
,
HashMap
<
String
,
INDArray
>>>(
ensemble_result
.
entrySet
());
if
(
list
.
size
()
!=
1
)
{
System
.
out
.
format
(
"grpc failed: please use get_ensemble impl."
);
return
null
;
}
return
list
.
get
(
0
).
getValue
();
}
public
Map
<
String
,
HashMap
<
String
,
INDArray
>>
get_ensemble
()
throws
Exception
{
InferenceResponse
resp
=
null
;
try
{
resp
=
callFuture_
.
get
();
...
...
@@ -401,4 +471,4 @@ class PredictFuture {
}
return
callBackFunc_
.
apply
(
resp
);
}
}
}
java/paddle-serving-sdk-java/src/main/proto/multi_lang_general_model_service.proto
浏览文件 @
27e45738
...
...
@@ -18,8 +18,6 @@ option java_multiple_files = true;
option
java_package
=
"io.paddle.serving.grpc"
;
option
java_outer_classname
=
"ServingProto"
;
package
paddle
.
serving.grpc
;
message
Tensor
{
optional
bytes
data
=
1
;
repeated
int32
int_data
=
2
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录