print("{} {} environment running failure. Please refer to https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/linux-pip.html to configure environment".format(case_type,case_name))
print(
"{} {} environment running failure. Please refer to https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/linux-pip.html to configure environment".
format(case_type,case_name))
os._exit(0)
os._exit(0)
else:
else:
print("{} {} environment running failure, if you need this environment, please refer to https://github.com/PaddlePaddle/Serving/blob/develop/doc/Install_CN.md".format(case_type,case_name))
print(
"{} {} environment running failure, if you need this environment, please refer to https://github.com/PaddlePaddle/Serving/blob/develop/doc/Install_CN.md".
self.general_model_config_fn:'list'=[] # ["GeneralInferOp_0/general_model.prototxt"]The quantity is equal to the InferOp quantity,Feed and Fetch --OP
self.general_model_config_fn:'list'=[] # ["GeneralInferOp_0/general_model.prototxt"]The quantity is equal to the InferOp quantity,Feed and Fetch --OP
self.subdirectory:'list'=[] # The quantity is equal to the InferOp quantity, and name = node.name = engine.name
self.subdirectory:'list'=[] # The quantity is equal to the InferOp quantity, and name = node.name = engine.name
self.model_config_paths:'collections.OrderedDict()' # Save the serving_server_conf.prototxt path (feed and fetch information) this is a map for multi-model in a workflow
self.model_config_paths:'collections.OrderedDict()' # Save the serving_server_conf.prototxt path (feed and fetch information) this is a map for multi-model in a workflow
self.dist_carrier_id: string, mark distributed model carrier name, "" default.
self.dist_cfg_file: string, file name of distributed configure, "" default.
self.dist_nranks: int, number of distributed nodes, 0 default.
self.dist_endpoints: list of string, all endpoints(ip:port) of distributed nodes, [] default.
self.dist_subgraph_index: index of distributed subgraph model, -1 default. It is used to select the endpoint of the current shard in distribute model. -1 default.
self.dist_worker_serving_endpoints: all endpoints of worker serving in the same machine. [] default.
self.dist_master_serving: the master serving is used for receiving client requests, only in pp0 of pipeline parallel, False default.