@@ -30,7 +30,7 @@ The goal of Paddle Serving is to provide high-performance, flexible and easy-to-
- Integrate high-performance server-side inference engine paddle Inference and mobile-side engine paddle Lite. Models of other machine learning platforms (Caffe/TensorFlow/ONNX/PyTorch) can be migrated to paddle through [x2paddle](https://github.com/PaddlePaddle/X2Paddle).
- There are two frameworks, namely high-performance C++ Serving and high-easy-to-use Python pipeline. The C++ Serving is based on the bRPC network framework to create a high-throughput, low-latency inference service, and its performance indicators are ahead of competing products. The Python pipeline is based on the gRPC/gRPC-Gateway network framework and the Python language to build a highly easy-to-use and high-throughput inference service. How to choose which one please see [Techinical Selection](doc/Serving_Design_EN.md#21-design-selection).
- Support multiple [protocols](doc/C++_Serving/Inference_Protocols_CN.md) such as HTTP, gRPC, bRPC, and provide C++, Python, Java language SDK.
- Design and implement a high-performance inference service framework for asynchronous pipelines based on directed acyclic graph (DAG), with features such as multi-model combination, asynchronous scheduling, concurrent inference, dynamic batch, multi-card multi-stream inference, etc.
- Design and implement a high-performance inference service framework for asynchronous pipelines based on directed acyclic graph (DAG), with features such as multi-model combination, asynchronous scheduling, concurrent inference, dynamic batch, multi-card multi-stream inference, request cache, etc.
- Adapt to a variety of commonly used computing hardwares, such as x86 (Intel) CPU, ARM CPU, Nvidia GPU, Kunlun XPU, HUAWEI Ascend 310/910, HYGON DCU、Nvidia Jetson etc.
- Integrate acceleration libraries of Intel MKLDNN and Nvidia TensorRT, and low-precision and quantitative inference.
- Provide a model security deployment solution, including encryption model deployment, and authentication mechanism, HTTPs security gateway, which is used in practice.
...
...
@@ -75,6 +75,7 @@ The first step is to call the model save interface to generate a model parameter
-[Guide for RESTful/gRPC/bRPC APIs(Chinese)](doc/C++_Serving/Introduction_CN.md#42-多语言多协议Client)
-[Infer on quantizative models](doc/Low_Precision_EN.md)
-[Data format of classic models(Chinese)](doc/Process_data_CN.md)