Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
24d76a63
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
24d76a63
编写于
9月 07, 2021
作者:
H
HexToString
提交者:
ShiningZhang
9月 07, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix proto change
上级
f00e91f7
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
42 addition
and
33 deletion
+42
-33
doc/HTTP_SERVICE_CN.md
doc/HTTP_SERVICE_CN.md
+2
-2
java/src/main/java/io/paddle/serving/client/Client.java
java/src/main/java/io/paddle/serving/client/Client.java
+32
-28
python/examples/ocr/README.md
python/examples/ocr/README.md
+1
-1
python/examples/ocr/README_CN.md
python/examples/ocr/README_CN.md
+1
-1
python/paddle_serving_client/httpclient.py
python/paddle_serving_client/httpclient.py
+6
-1
未找到文件。
doc/HTTP_SERVICE_CN.md
100644 → 100755
浏览文件 @
24d76a63
...
...
@@ -42,7 +42,7 @@ python3.6 -m paddle_serving_server.serve --model uci_housing_model --thread 10 -
为了方便用户快速的使用Http方式请求Server端预测服务,我们已经将常用的Http请求的数据体封装、压缩、请求加密等功能封装为一个HttpClient类提供给用户,方便用户使用。
使用HttpClient最简单只需要
三步,1、创建一个HttpClient对象。2、加载Client端的prototxt配置文件(本例中为python/examples/fit_a_line/目录下的uci_housing_client/serving_client_conf.prototxt),3
、调用Predict函数,通过Http方式请求预测服务。
使用HttpClient最简单只需要
四步,1、创建一个HttpClient对象。2、加载Client端的prototxt配置文件(本例中为python/examples/fit_a_line/目录下的uci_housing_client/serving_client_conf.prototxt)。3、调用coonect函数。4
、调用Predict函数,通过Http方式请求预测服务。
此外,您可以根据自己的需要配置Server端IP、Port、服务名称(此服务名称需要与
[
`core/general-server/proto/general_model_service.proto`
](
../core/general-server/proto/general_model_service.proto
)
文件中的Service服务名和rpc方法名对应,即
`GeneralModelService`
字段和
`inference`
字段),设置Request数据体压缩,设置Response支持压缩传输,模型加密预测(需要配置Server端使用模型加密)、设置响应超时时间等功能。
...
...
@@ -103,7 +103,7 @@ repeated int32 numbers = 1;
```
#### elem_type
表示数据类型,0 means int64, 1 means float32, 2 means int32,
3
means bytes(string)
表示数据类型,0 means int64, 1 means float32, 2 means int32,
20
means bytes(string)
#### fetch_var_names
...
...
java/src/main/java/io/paddle/serving/client/Client.java
浏览文件 @
24d76a63
...
...
@@ -59,9 +59,20 @@ import java.util.zip.GZIPInputStream;
import
java.util.zip.GZIPOutputStream
;
enum
ElementType
{
Int64_type
,
Float32_type
,
Int32_type
,
Bytes_type
;
class
ElementType
{
public
static
final
int
Int64_type
=
0
;
public
static
final
int
Float32_type
=
1
;
public
static
final
int
Int32_type
=
2
;
public
static
final
int
String_type
=
20
;
public
static
final
Map
<
Integer
,
String
>
feedTypeToDataKey_
;
static
{
feedTypeToDataKey_
=
new
HashMap
<
Integer
,
String
>();
feedTypeToDataKey_
.
put
(
ElementType
.
Int64_type
,
"int64_data"
);
feedTypeToDataKey_
.
put
(
ElementType
.
Float32_type
,
"float_data"
);
feedTypeToDataKey_
.
put
(
ElementType
.
Int32_type
,
"int_data"
);
feedTypeToDataKey_
.
put
(
ElementType
.
String_type
,
"data"
);
}
}
class
Profiler
{
...
...
@@ -104,7 +115,6 @@ public class Client {
private
Map
<
String
,
Integer
>
feedTypes_
;
private
Map
<
String
,
List
<
Integer
>>
feedShapes_
;
private
Map
<
String
,
Integer
>
feedNameToIndex_
;
private
Map
<
Integer
,
String
>
feedTypeToDataKey_
;
private
List
<
String
>
fetchNames_
;
private
Map
<
String
,
Integer
>
fetchTypes_
;
private
Set
<
String
>
lodTensorSet_
;
...
...
@@ -147,12 +157,6 @@ public class Client {
channel_
=
null
;
blockingStub_
=
null
;
feedTypeToDataKey_
=
new
HashMap
<
Integer
,
String
>();
feedTypeToDataKey_
.
put
(
0
,
"int64_data"
);
feedTypeToDataKey_
.
put
(
1
,
"float_data"
);
feedTypeToDataKey_
.
put
(
2
,
"int_data"
);
feedTypeToDataKey_
.
put
(
3
,
"data"
);
profiler_
=
new
Profiler
();
boolean
is_profile
=
false
;
String
FLAGS_profile_client
=
System
.
getenv
(
"FLAGS_profile_client"
);
...
...
@@ -525,7 +529,7 @@ public class Client {
jsonTensor
.
put
(
"elem_type"
,
element_type
);
// 处理数据与shape
String
protoDataKey
=
feedTypeToDataKey_
.
get
(
element_type
);
String
protoDataKey
=
ElementType
.
feedTypeToDataKey_
.
get
(
element_type
);
// 如果是INDArray类型,先转为一维.
// 此时shape为INDArray的shape
if
(
objectValue
instanceof
INDArray
){
...
...
@@ -535,11 +539,11 @@ public class Client {
for
(
long
dim:
indarrayShape
){
shape
.
add
((
int
)
dim
);
}
if
(
element_type
==
ElementType
.
Int64_type
.
ordinal
()
){
if
(
element_type
==
ElementType
.
Int64_type
){
objectValue
=
tempIndArray
.
data
().
asLong
();
}
else
if
(
element_type
==
ElementType
.
Int32_type
.
ordinal
()
){
}
else
if
(
element_type
==
ElementType
.
Int32_type
){
objectValue
=
tempIndArray
.
data
().
asInt
();
}
else
if
(
element_type
==
ElementType
.
Float32_type
.
ordinal
()
){
}
else
if
(
element_type
==
ElementType
.
Float32_type
){
objectValue
=
tempIndArray
.
data
().
asFloat
();
}
else
{
throw
new
Exception
(
"INDArray 类型不支持"
);
...
...
@@ -564,11 +568,11 @@ public class Client {
// 此时无法获取batch信息,故对shape不处理
// 由于Proto中为Repeated,需要把数据包装成list
if
(
objectValue
instanceof
String
){
if
(
feedTypes_
.
get
(
protoDataKey
)!=
ElementType
.
Bytes_type
.
ordinal
()
){
if
(
feedTypes_
.
get
(
protoDataKey
)!=
ElementType
.
String_type
){
throw
new
Exception
(
"feedvar is not string-type,feed can`t be a single string."
);
}
}
else
{
if
(
feedTypes_
.
get
(
protoDataKey
)==
ElementType
.
Bytes_type
.
ordinal
()
){
if
(
feedTypes_
.
get
(
protoDataKey
)==
ElementType
.
String_type
){
throw
new
Exception
(
"feedvar is string-type,feed, feed can`t be a single int or others."
);
}
}
...
...
@@ -662,17 +666,17 @@ public class Client {
for
(
long
dim:
indarrayShape
){
shape
.
add
((
int
)
dim
);
}
if
(
element_type
==
ElementType
.
Int64_type
.
ordinal
()
){
if
(
element_type
==
ElementType
.
Int64_type
){
List
<
Long
>
iter
=
Arrays
.
stream
(
tempIndArray
.
data
().
asLong
()).
boxed
().
collect
(
Collectors
.
toList
());
tensor_builder
.
addAllInt64Data
(
iter
);
}
else
if
(
element_type
==
ElementType
.
Int32_type
.
ordinal
()
){
}
else
if
(
element_type
==
ElementType
.
Int32_type
){
List
<
Integer
>
iter
=
Arrays
.
stream
(
tempIndArray
.
data
().
asInt
()).
boxed
().
collect
(
Collectors
.
toList
());
tensor_builder
.
addAllIntData
(
iter
);
}
else
if
(
element_type
==
ElementType
.
Float32_type
.
ordinal
()
){
}
else
if
(
element_type
==
ElementType
.
Float32_type
){
List
<
Float
>
iter
=
Arrays
.
asList
(
ArrayUtils
.
toObject
(
tempIndArray
.
data
().
asFloat
()));
tensor_builder
.
addAllFloatData
(
iter
);
...
...
@@ -684,13 +688,13 @@ public class Client {
// 如果是数组类型,则无须处理,直接使用即可。
// 且数组无法嵌套,此时batch无法从数据中获取
// 默认batch维度为1,或者feedVar的shape信息中已包含batch
if
(
element_type
==
ElementType
.
Int64_type
.
ordinal
()
){
if
(
element_type
==
ElementType
.
Int64_type
){
List
<
Long
>
iter
=
Arrays
.
stream
((
long
[])
objectValue
).
boxed
().
collect
(
Collectors
.
toList
());
tensor_builder
.
addAllInt64Data
(
iter
);
}
else
if
(
element_type
==
ElementType
.
Int32_type
.
ordinal
()
){
}
else
if
(
element_type
==
ElementType
.
Int32_type
){
List
<
Integer
>
iter
=
Arrays
.
stream
((
int
[])
objectValue
).
boxed
().
collect
(
Collectors
.
toList
());
tensor_builder
.
addAllIntData
(
iter
);
}
else
if
(
element_type
==
ElementType
.
Float32_type
.
ordinal
()
){
}
else
if
(
element_type
==
ElementType
.
Float32_type
){
List
<
Float
>
iter
=
Arrays
.
asList
(
ArrayUtils
.
toObject
((
float
[])
objectValue
));
tensor_builder
.
addAllFloatData
(
iter
);
}
else
{
...
...
@@ -707,11 +711,11 @@ public class Client {
// 在index=0处,加上batch
shape
.
add
(
0
,
list
.
size
());
}
if
(
element_type
==
ElementType
.
Int64_type
.
ordinal
()
){
if
(
element_type
==
ElementType
.
Int64_type
){
tensor_builder
.
addAllInt64Data
((
List
<
Long
>)(
List
)
recursiveExtract
(
objectValue
));
}
else
if
(
element_type
==
ElementType
.
Int32_type
.
ordinal
()
){
}
else
if
(
element_type
==
ElementType
.
Int32_type
){
tensor_builder
.
addAllIntData
((
List
<
Integer
>)(
List
)
recursiveExtract
(
objectValue
));
}
else
if
(
element_type
==
ElementType
.
Float32_type
.
ordinal
()
){
}
else
if
(
element_type
==
ElementType
.
Float32_type
){
tensor_builder
.
addAllFloatData
((
List
<
Float
>)(
List
)
recursiveExtract
(
objectValue
));
}
else
{
// 看接口是String还是Bytes
...
...
@@ -723,11 +727,11 @@ public class Client {
// 由于Proto中为Repeated,需要把数据包装成list
List
<
Object
>
tempList
=
new
ArrayList
<>();
tempList
.
add
(
objectValue
);
if
(
element_type
==
ElementType
.
Int64_type
.
ordinal
()
){
if
(
element_type
==
ElementType
.
Int64_type
){
tensor_builder
.
addAllInt64Data
((
List
<
Long
>)(
List
)
tempList
);
}
else
if
(
element_type
==
ElementType
.
Int32_type
.
ordinal
()
){
}
else
if
(
element_type
==
ElementType
.
Int32_type
){
tensor_builder
.
addAllIntData
((
List
<
Integer
>)(
List
)
tempList
);
}
else
if
(
element_type
==
ElementType
.
Float32_type
.
ordinal
()
){
}
else
if
(
element_type
==
ElementType
.
Float32_type
){
tensor_builder
.
addAllFloatData
((
List
<
Float
>)(
List
)
tempList
);
}
else
{
// 看接口是String还是Bytes
...
...
python/examples/ocr/README.md
100644 → 100755
浏览文件 @
24d76a63
...
...
@@ -119,7 +119,7 @@ The pre-processing and post-processing is in the C + + server part, the image's
so the value of parameter
`feed_var`
which is in the file
`ocr_det_client/serving_client_conf.prototxt`
should be changed.
for this case,
`feed_type`
should be
3
(which means the data type is string),
`shape`
should be 1.
for this case,
`feed_type`
should be
20
(which means the data type is string),
`shape`
should be 1.
By passing in multiple client folder paths, the client can be started for multi model prediction.
```
...
...
python/examples/ocr/README_CN.md
100644 → 100755
浏览文件 @
24d76a63
...
...
@@ -118,7 +118,7 @@ python3 -m paddle_serving_server.serve --model ocr_det_model ocr_rec_model --por
即
`ocr_det_client/serving_client_conf.prototxt`
中
`feed_var`
字段
对于本示例而言,
`feed_type`
应修改为
3
(数据类型为string),
`shape`
为1.
对于本示例而言,
`feed_type`
应修改为
20
(数据类型为string),
`shape`
为1.
通过在客户端启动后加入多个client模型的client配置文件夹路径,启动client进行预测。
```
...
...
python/paddle_serving_client/httpclient.py
浏览文件 @
24d76a63
...
...
@@ -38,7 +38,12 @@ float32_type = 1
int32_type
=
2
bytes_type
=
20
# this is corresponding to the proto
proto_data_key_list
=
[
"int64_data"
,
"float_data"
,
"int_data"
,
"data"
]
proto_data_key_list
=
{
0
:
"int64_data"
,
1
:
"float_data"
,
2
:
"int_data"
,
20
:
"data"
}
def
list_flatten
(
items
,
ignore_types
=
(
str
,
bytes
)):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录